Encoding the identity and location of objects in human LOC

We are able to recognize objects independent of their location in the visual field. At the same time, we also keep track of the location of objects to orient ourselves and to interact with the environment. The lateral occipital complex (LOC) has been suggested as the prime cortical region for representation of object identity. However, the extent to which LOC also represents object location has remained debated. In this study we used high-resolution fMRI in combination with multivoxel pattern classification to investigate the cortical encoding of three object exemplars from four different categories presented in two different locations. This approach allowed us to study location-tolerant object information and object-tolerant location information in LOC, both at the level of categories and exemplars. We found evidence for both location-tolerant object information and object-tolerant location information in LOC at the level of categories and exemplars. Our results further highlight the mixing of identity and location information in the ventral visual pathway.

[1]  David D. Cox,et al.  What response properties do individual neurons need to underlie position and clutter "invariant" object recognition? , 2009, Journal of neurophysiology.

[2]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  N. Kanwisher,et al.  Discrimination Training Alters Object Representations in Human Extrastriate Cortex , 2006, The Journal of Neuroscience.

[4]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[5]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[6]  G. Boynton,et al.  Feature-Based Attentional Modulations in the Absence of Direct Visual Stimulation , 2007, Neuron.

[7]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[8]  Johan Wagemans,et al.  Perceived Shape Similarity among Unfamiliar Objects and the Organization of the Human Object Vision Pathway , 2008, The Journal of Neuroscience.

[9]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[10]  Scott O. Murray,et al.  Contrast Invariance in the Human Lateral Occipital Complex Depends on Attention , 2006, Current Biology.

[11]  R. Weale Analysis of Visual Behaviour , 1983 .

[12]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[13]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[14]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[15]  Robbe L. T. Goris,et al.  Frontiers in Computational Neuroscience Computational Neuroscience Neural Representations That Support Invariant Object Recognition , 2022 .

[16]  M. Goodale,et al.  Two visual systems re-viewed , 2008, Neuropsychologia.

[17]  N. Kanwisher,et al.  How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI Study , 2002, Neuron.

[18]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[19]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[20]  Li Fei-Fei,et al.  Neural mechanisms of rapid natural scene categorization in human visual cortex , 2009, Nature.

[21]  T. Carlson,et al.  Patterns of Activity in the Categorical Representations of Objects , 2003 .

[22]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[23]  Tomaso Poggio,et al.  Generalization in vision and motor control , 2004, Nature.

[24]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[25]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[26]  E. Wojciulik,et al.  Attention increases neural selectivity in the human lateral occipital complex , 2004, Nature Neuroscience.

[27]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[29]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.

[30]  S. Schanberg,et al.  Visual Receptive Fields of Neurons in Inferotemporal Cortex of the Monkey , 2005 .

[31]  Dwight J. Kravitz,et al.  How position dependent is visual object recognition? , 2008, Trends in Cognitive Sciences.

[32]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[33]  G. Boynton,et al.  Global effects of feature-based attention in human visual cortex , 2002, Nature Neuroscience.

[34]  N. Kanwisher,et al.  Interpreting fMRI data: maps, modules and dimensions , 2008, Nature Reviews Neuroscience.

[35]  G. Aguirre,et al.  Different spatial scales of shape similarity representation in lateral and ventral LOC. , 2009, Cerebral cortex.

[36]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[37]  Irving Biederman,et al.  Invariance of long-term visual priming to scale, reflection, translation, and hemisphere , 2001, Vision Research.

[38]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[40]  Matthias Niemeier,et al.  A contralateral preference in the lateral occipital area: sensory and attentional mechanisms. , 2004, Cerebral cortex.

[41]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[42]  Johan Wagemans,et al.  The representation of subordinate shape similarity in human occipitotemporal cortex. , 2008, Journal of vision.

[43]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[44]  N. Kanwisher,et al.  Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions , 2000, Journal of Cognitive Neuroscience.

[45]  E. Rosch,et al.  Categorization of Natural Objects , 1981 .

[46]  R. Passingham,et al.  Reading Hidden Intentions in the Human Brain , 2007, Current Biology.

[47]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[48]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[49]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[50]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[51]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[52]  Doris Y. Tsao,et al.  Fine-Scale Spatial Organization of Face and Object Selectivity in the Temporal Lobe: Do Functional Magnetic Resonance Imaging, Optical Imaging, and Electrophysiology Agree? , 2008, The Journal of Neuroscience.

[53]  N. Kanwisher,et al.  Only some spatial patterns of fMRI response are read out in task performance , 2007, Nature Neuroscience.

[54]  R. Vogels,et al.  Spatial sensitivity of macaque inferior temporal neurons , 2000, The Journal of comparative neurology.

[55]  F. Tong,et al.  Decoding Seen and Attended Motion Directions from Activity in the Human Visual Cortex , 2006, Current Biology.

[56]  I. Biederman,et al.  Evidence for Complete Translational and Reflectional Invariance in Visual Object Priming , 1991, Perception.

[57]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[58]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[59]  Russell A. Epstein,et al.  Position selectivity in scene- and object-responsive occipitotemporal regions. , 2007, Journal of neurophysiology.

[60]  Nathan Intrator,et al.  (coarse Coding of Shape Fragments) (retinotopy) Representation of Structure , 2000 .

[61]  J. Duncan,et al.  Top-Down Activation of Shape-Specific Population Codes in Visual Cortex during Mental Imagery , 2009, The Journal of Neuroscience.

[62]  T. Poggio,et al.  Neural mechanisms of object recognition , 2002, Current Opinion in Neurobiology.

[63]  N. Kanwisher,et al.  A Preference for Contralateral Stimuli in Human Object- and Face-Selective Cortex , 2007, PloS one.

[64]  A. Kleinschmidt,et al.  Graded size sensitivity of object-exemplar-evoked activity patterns within human LOC subregions. , 2008, Journal of neurophysiology.

[65]  N. Kanwisher,et al.  Multivariate Patterns in Object-Selective Cortex Dissociate Perceptual and Physical Shape Similarity , 2008, PLoS biology.

[66]  R. Goebel,et al.  Individual faces elicit distinct response patterns in human anterior temporal cortex , 2007, Proceedings of the National Academy of Sciences.

[67]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[68]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[69]  Dwight J. Kravitz,et al.  High-level visual object representations are constrained by position. , 2010, Cerebral cortex.

[70]  Leila Reddy,et al.  Coding of visual objects in the ventral stream , 2006, Current Opinion in Neurobiology.

[71]  J. Maunsell,et al.  Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. , 2003, Journal of neurophysiology.

[72]  A. Treisman Solutions to the Binding Problem Progress through Controversy and Convergence , 1999, Neuron.

[73]  G. Orban,et al.  Shape interactions in macaque inferior temporal neurons. , 1999, Journal of neurophysiology.

[74]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[75]  T. Poggio,et al.  Are Cortical Models Really Bound by the “Binding Problem”? , 1999, Neuron.

[76]  Alice J. O'Toole,et al.  Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex , 2005, Journal of Cognitive Neuroscience.

[77]  Nancy Kanwisher,et al.  The distribution of category and location information across object-selective regions in human visual cortex , 2008, Proceedings of the National Academy of Sciences.

[78]  N. Logothetis,et al.  Cortical mechanisms of sensory learning and object recognition , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[79]  Raymond J. Dolan,et al.  fMRI Activity Patterns in Human LOC Carry Information about Object Exemplars within Category , 2008, Journal of Cognitive Neuroscience.

[80]  A. Caramazza,et al.  Category-Specific Organization in the Human Brain Does Not Require Visual Experience , 2009, Neuron.

[81]  Hinze Hogendoorn,et al.  Spatial coding and invariance in object-selective cortex , 2011, Cortex.

[82]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[83]  Thomas Serre,et al.  Reading the mind's eye: Decoding category information during mental imagery , 2010, NeuroImage.

[84]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[85]  M. Goodale,et al.  The visual brain in action , 1995 .

[86]  N. Kanwisher,et al.  Feedback of pVisual Object Information to Foveal Retinotopic Cortex , 2008, Nature Neuroscience.

[87]  L. Reddy,et al.  Category selectivity in the ventral visual pathway confers robustness to clutter and diverted attention , 2010 .

[88]  K. Grill-Spector,et al.  Relating retinotopic and object-selective responses in human lateral occipital cortex. , 2008, Journal of neurophysiology.

[89]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[90]  Johan Wagemans,et al.  Distributed subordinate specificity for bodies, faces, and buildings in human ventral visual cortex , 2010, NeuroImage.