Investigation of interfacial area and void fraction in upward, cocurrent gas‐liquid flow

Interfacial area was measured in cocurrent, gas-liquid upward flow through a vertical, 2.54 cm I.D. and 2.67 m long tube by absorption of CO2 diluted in air into aqueous sodium hydroxide solution. Void fraction and pressure drop were also measured for superficial liquid velocities up to 1.3 m/s. Although the interfacial area exhibited a maximum and minimum with increasing superficial gas velocities at relatively high liquid flow rates as in previous experiments, several significant differences were found. Since the dissipation parameters proposed in the past to correlate interfacial area were found to be less than satisfactory, a new empirical relation is proposed, which can correlate most of the present data within ± 20%. On a mcsure la surface intcrfaciale en ecoulement ascendant gaz-liquide a cocourant dans un tube de 234 cm de diametre interieur et de 2,67 m de long, par absorption de CO2 dilue dans l'air dans une solution d'hydroxyde de sodium aqueux. On a egalement mesure la fraction de vide et la perte de charge pour des vitesses liquides superficielles allant jusqu'a 1.3 m/s. Bien que la surface interfaciale montre un maximum et un minimum avec l'accroissement des vitesses de gaz superficielles a des debits liquides relativement eleves, plusieurs differences importantes ont ete remarquees. Ixs parametres de dissipation proposes dans le passe pour la correation de la surface interfaciale s'etant averes insatisfaisants, on propose une nouvelle relation enipirique, capable de correler la plupart des donnCes actuelles avec une erreur inferieure a 20%.

[1]  B. W. Shende,et al.  Mass transfer in packed columns: co-current operation , 1974 .

[2]  V. Specchia,et al.  Absorption in packed towers with concurrent upward flow , 1974 .

[3]  P. V. Danckwerts Gas absorption accompanied by chemical reaction , 1955 .

[4]  John C. Jepsen,et al.  Mass transfer in two‐phase flow in horizontal pipelines , 1970 .

[5]  E. Rhodes,et al.  Chemical mass transfer in co-current gas-liquid slug fíow in helical coils , 1974 .

[6]  M. E. Charles,et al.  Vertical two-phase flow part I. Flow pattern correlations , 1974 .

[7]  T. Tomida,et al.  Effective interfacial area and liquid—side mass transfer coefficient in the upward two-phase flow of gas—liquid mixtures☆ , 1978 .

[8]  G. Gregory,et al.  Physical and chemical mass transfer in horizontal cocurrent gas—liquid slug flow , 1971 .

[9]  C. E. Wales Physical and chemical absorption in two‐phase annular and dispersed horizontal flow , 1966 .

[10]  D. E. Cormack,et al.  A preliminary study of interfacial areas in vertical cocurrent, two‐phase upflow , 1979 .

[11]  H. Gomaa,et al.  Comparison of methods for measuring interfacial areas in gas‐liquid dispersions , 1977 .

[12]  Sanjoy Banerjee,et al.  Studies on cocurrent gas‐liquid flow in helically coiled tubes. II. Theory and experiments on turbulent mass transfer with and without chemical reaction , 1970 .

[13]  C. Wilke,et al.  Simultaneous measurement of interfacial area and mass transfer coefficients for a well—mixed gas dispersion in aqueous electrolyte solutions , 1974 .

[14]  A. K. Mitra,et al.  Pressure drop, holdup and interfacial area in vertical two-phase flow of multi-jet ejector induced dispersions , 1984 .

[15]  N. Zuber,et al.  Average volumetric concentration in two-phase flow systems , 1965 .

[16]  Mamoru Ishii,et al.  Two-fluid model and hydrodynamic constitutive relations , 1984 .

[17]  Richard T. Lahey,et al.  Advances in two-phase flow instrumentation , 1981 .

[18]  A. E. Dukler,et al.  Modelling flow pattern transitions for steady upward gas‐liquid flow in vertical tubes , 1980 .