Regional Information Capacity of the Linear Time-Varying Channel

We determine the information capacity of the linear, time-varying communications channel with additive white Gaussian noise for transmission signals with support approximately restricted to closed regions of the time and frequency domains. We address the two-part problem of first, constructing appropriate transmission functions, and second, determining the mutual information. Our approach provides a signaling set that is adaptive to the time and frequency stability of the channel, and we use this set to estimate the channel’s information capacity. In the limiting regime, this approach recovers the time-invariant capacity up to a redundancy factor.

[1]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[2]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[3]  Anna Scaglione,et al.  On the capacity of linear time-varying channels , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[4]  T. Strohmer Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications , 2000, math/0010244.

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Andrea J. Goldsmith,et al.  Capacity of Time-Varying Channels With Causal Channel Side Information , 1997, IEEE Transactions on Information Theory.

[7]  Sergio VerdÂ,et al.  Fading Channels: InformationTheoretic and Communications Aspects , 2000 .

[8]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[9]  G. Folland Harmonic analysis in phase space , 1989 .

[10]  Thomas Strohmer,et al.  Optimal OFDM design for time-frequency dispersive channels , 2003, IEEE Trans. Commun..

[11]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[12]  A. Wyner A note on the capacity of the band-limited Gaussian channel , 1966, The Bell System Technical Journal.

[13]  K. Seip,et al.  Density theorems for sampling and interpolation in the Bargmann-Fock space II. , 1992 .

[14]  Akbar M. Sayeed,et al.  Orthogonal time-frequency signaling over doubly dispersive channels , 2004, IEEE Transactions on Information Theory.

[15]  I. Daubechies,et al.  Frames in the Bargmann Space of Entire Functions , 1988 .

[16]  Werner Kozek,et al.  On the transfer function calculus for underspread LTV channels , 1997, IEEE Trans. Signal Process..

[17]  Andreas F. Molisch,et al.  Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels , 1998, IEEE J. Sel. Areas Commun..

[18]  W. Kozek,et al.  On the eigenstructure of underspread WSSUS channels , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[19]  K. Seip Density theorems for sampling and interpolation in the Bargmann-Fock space I , 1992, math/9204238.

[20]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[21]  A. Ron,et al.  Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .

[22]  Ingram Olkin,et al.  Inequalities: Theory of Majorization and Its Application , 1979 .

[23]  A. Janssen Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .

[24]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[25]  Shlomo Shamai,et al.  Capacity of Underspread Noncoherent WSSUS Fading Channels under Peak Signal Constraints , 2007, 2007 IEEE International Symposium on Information Theory.

[26]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[27]  M. Medard,et al.  The issue of spreading in multipath time-varying channels , 1995, 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century.

[28]  K. Seip Density theorems for sampling and interpolation in the Bargmann-Fock space I. , 1992, math/9204238.

[29]  Yurii Lyubarskii Frames in the Bargmann space of entire functions , 1992 .

[30]  Helmut Bölcskei,et al.  Gabor frames, unimodularity, and window decay , 2000 .

[31]  Shlomo Shamai,et al.  Fading Channels: Information-Theoretic and Communication Aspects , 1998, IEEE Trans. Inf. Theory.

[32]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[33]  I. Daubechies,et al.  Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .

[34]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[35]  Suhas N. Diggavi Analysis of multicarrier transmission in time-varying channels , 1997, Proceedings of ICC'97 - International Conference on Communications.