A true PML approach for steady-state vibration analysis of an elastically supported beam under moving load by a DLSFEM formulation

[1]  E. L. Ince Ordinary differential equations , 1927 .

[2]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[3]  O. C. Zienkiewicz,et al.  Least square-finite element for elasto-static problems. Use of `reduced' integration , 1974 .

[4]  E. Eason A review of least-squares methods for solving partial differential equations , 1976 .

[5]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[6]  H. B. Keller,et al.  Boundary Value Problems on Semi-Infinite Intervals and Their Numerical Solution , 1980 .

[7]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[8]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[9]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[10]  J. Keller,et al.  Non-reflecting boundary conditions for elastic waves , 1990 .

[11]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[12]  D. Givoli A spatially exact non-reflecting boundary condition for time dependent problems , 1992 .

[13]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[14]  R. Higdon Radiation boundary conditions for dispersive waves , 1994 .

[15]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[16]  M. Gunzburger,et al.  Least-Squares Finite Element Approximations to Solutions of Interface Problems , 1998 .

[17]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[18]  B. Jiang The Least-Squares Finite Element Method , 1998 .

[19]  B. Jiang On the least-squares method , 1998 .

[20]  Christian Madshus,et al.  HIGH-SPEED RAILWAY LINES ON SOFT GROUND: DYNAMIC BEHAVIOUR AT CRITICAL TRAIN SPEED , 2000 .

[21]  Suh-Yuh Yang,et al.  Analysis of a least squares finite element method for the circular arch problem , 2000, Appl. Math. Comput..

[22]  Suh-Yuh Yang,et al.  Least-squares finite element approximations to the Timoshenko beam problem , 2000, Appl. Math. Comput..

[23]  P. H. Kirkegaard,et al.  FINITE ELEMENT MODELLING OF INFINITE EULER BEAMS ON KELVIN FOUNDATIONS EXPOSED TO MOVING LOADS IN CONVECTED CO-ORDINATES , 2001 .

[24]  B. Jiang,et al.  The least‐squares finite element method in elasticity—Part I: Plane stress or strain with drilling degrees of freedom , 2002 .

[25]  Michael M. J. Proot,et al.  Analysis of a Discontinuous Least Squares Spectral Element Method , 2002, J. Sci. Comput..

[26]  Bo-nan Jiang,et al.  The least‐squares finite element method in elasticity. Part II: Bending of thin plates , 2002 .

[27]  A. Chopra,et al.  Perfectly matched layers for time-harmonic elastodynamics of unbounded domains : Theory and finite-element implementation , 2003 .

[28]  D. Givoli,et al.  High-order non-reflecting boundary scheme for time-dependent waves , 2003 .

[29]  A. Metrikine Steady state response of an infinite string on a non-linear visco-elastic foundation to moving point loads , 2004 .

[30]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[31]  I. Singer,et al.  A perfectly matched layer for the Helmholtz equation in a semi-infinite strip , 2004 .

[32]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[33]  J. N. Reddy,et al.  Mixed plate bending elements based on least‐squares formulation , 2004 .

[34]  John Yen,et al.  Introduction , 2004, CACM.

[35]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[36]  Rickard Bensow,et al.  Discontinuous Least-Squares finite element method for the Div-Curl problem , 2005, Numerische Mathematik.

[37]  J. P. Pontaza,et al.  Least-squares finite element formulation for shear-deformable shells , 2005 .

[38]  M. Larson,et al.  DISCONTINUOUS/CONTINUOUS LEAST-SQUARES FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS , 2005 .

[39]  J. P. Pontaza,et al.  Least-squares variational principles and the finite element method: theory, formulations, and models for solid and fluid mechanics , 2005 .

[40]  A. Mallik,et al.  Steady-state response of an elastically supported infinite beam to a moving load , 2006 .

[41]  D. Duhamel,et al.  Finite element procedures for nonlinear structures in moving coordinates. Part II: Infinite beam under moving harmonic loads , 2008 .

[42]  RUNCHANG LIN Discontinuous Discretization for Least-Squares Formulation of Singularly Perturbed Reaction-Diffusion Problems in One and Two Dimensions , 2008, SIAM J. Numer. Anal..

[43]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[44]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[45]  Huoyuan Duan,et al.  Analysis of a least-squares finite element method for the thin plate problem , 2009 .

[46]  Mixed least-squares finite element models for static and free vibration analysis of laminated composite plates , 2009 .

[47]  Runchang Lin,et al.  Discontinuous Galerkin least-squares finite element methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and boundary singularities , 2009, Numerische Mathematik.

[48]  Huajiang Ouyang,et al.  Moving-load dynamic problems: A tutorial (with a brief overview) , 2011 .

[49]  Niki D. Beskou,et al.  Dynamic effects of moving loads on road pavements: A review , 2011 .

[50]  René Matzen An efficient finite element time‐domain formulation for the elastic second‐order wave equation: A non‐split complex frequency shifted convolutional PML , 2011 .

[51]  Z. Dimitrovová,et al.  Critical velocity of a uniformly moving load , 2012, Adv. Eng. Softw..

[52]  U. Gabbert,et al.  Comparison of different higher order finite element schemes for the simulation of Lamb waves , 2012 .

[53]  G. Lancioni Numerical comparison of high-order absorbing boundary conditions and perfectly matched layers for a dispersive one-dimensional medium , 2012 .

[54]  Dipanjan Basu,et al.  Analytical solutions for Euler–Bernoulli beam on visco‐elastic foundation subjected to moving load , 2013 .

[55]  F. Simões,et al.  Finite element dynamic analysis of finite beams on a bilinear foundation under a moving load , 2015 .

[56]  P. Castro Jorge,et al.  Dynamics of beams on non-uniform nonlinear foundations subjected to moving loads , 2015 .

[57]  M. Brun,et al.  Perfectly matched layers for flexural waves: An exact analytical model , 2016 .

[58]  D. Froio,et al.  Analytical solution for the elastic bending of beams lying on a variable Winkler support , 2016 .

[59]  S. A. Eftekhari A differential quadrature procedure for linear and nonlinear steady state vibrations of infinite beams traversed by a moving point load , 2016 .

[60]  Z. Dimitrovová Analysis of the critical velocity of a load moving on a beam supported by a finite depth foundation , 2017 .

[61]  António Pinto da Costa,et al.  Critical velocities of a beam on nonlinear elastic foundation under harmonic moving load , 2017 .

[62]  Ryan E. Janzen,et al.  TransPod Ultra-High-Speed Tube Transportation: Dynamics of Vehicles and Infrastructure , 2017 .

[63]  S. Krenk,et al.  Asymptotically Matched Layer (AML) for transient wave propagation in a moving frame of reference , 2017 .

[64]  D. Froio,et al.  Finite element dynamic analysis of beams on nonlinear elastic foundations under a moving oscillator , 2018 .

[65]  António Pinto da Costa,et al.  Universal analytical solution of the steady-state response of an infinite beam on a Pasternak elastic foundation under moving load , 2018 .

[66]  D. Froio,et al.  Dynamics of a beam on a bilinear elastic foundation under harmonic moving load , 2018, Acta Mechanica.

[67]  Egidio Rizzi,et al.  DLSFEM–PML formulation for the steady-state response of a taut string on visco-elastic support under moving load , 2020, Meccanica.

[68]  Egidio Rizzi,et al.  On the Numerical Modelization of Moving Load Beam Problems by a Dedicated Parallel Computing FEM Implementation , 2020, Archives of Computational Methods in Engineering.