A stochastic pitchfork bifurcation in a reaction-diffusion equation

We study in some detail the structure of the random attractor for the Chafee-Infante reaction-diffusion equation perturbed by a multiplicative white noise, du=( Δu+βu- u 3 ) dt+σuod W t ,x∈D⊂ R m First we prove, for m ⩽ 5, a lower bound on the dimension of the random attractor, which is of the same order in β as the upper bound we derived in an earlier paper, and is the same as that obtained in the deterministic case. Then we show, for m = 1, that as β passes through λ1 (the first eigenvalue of the negative Laplacian) from below, the system undergoes a stochastic bifurcation of pitchfork type. We believe that this is the first example of such a stochastic bifurcation in an infinite–dimensional setting. Central to our approach is the existence of a random unstable manifold.

[1]  O. Ladyzhenskaya,et al.  Attractors for Semigroups and Evolution Equations , 1991 .

[2]  M. Vishik,et al.  Attractors of partial differential evolution equations and estimates of their dimension , 1983 .

[3]  I. Chueshov Gevrey regularity of random attractors for stochastic reaction-diffusion equations , 2000 .

[4]  H. Crauel,et al.  Attractors for random dynamical systems , 1994 .

[5]  Paul Glendinning,et al.  From finite to infinite dimensional dynamical systems , 2001 .

[6]  L. Arnold,et al.  Recent Progress in Stochastic Bifurcation Theory , 2001 .

[7]  Hans Crauel,et al.  Additive Noise Destroys a Pitchfork Bifurcation , 1998 .

[8]  M. Marion Attractors for reaction-diffusion equations: existence and estimate of their dimension , 1987 .

[9]  H. Crauel Random Probability Measures on Polish Spaces , 2002 .

[10]  Tomás Caraballo,et al.  Stability and random attractors for a reaction-diffusion equation with multiplicative noise , 2000 .

[11]  T. Caraballo,et al.  ON THE UPPER SEMICONTINUITY OF COCYCLE ATTRACTORS FOR NON-AUTONOMOUS AND RANDOM DYNAMICAL SYSTEMS , 2003 .

[12]  F. Flandoli,et al.  Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise , 1996 .

[13]  Hans Crauel,et al.  Bifurcations of One-Dimensional Stochastic Differential Equations , 1999 .

[14]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[15]  L. Arnold,et al.  Stochastic bifurcation: instructive examples in dimension one , 1992 .

[16]  Giuseppe Da Prato,et al.  Construction of stochastic inertial manifolds using backward integration , 1996 .

[17]  Alain Bensoussan,et al.  Stochastic inertial manifold , 1995 .

[18]  L. Arnold,et al.  Order-preserving random dynamical systems: equilibria, attractors, applications , 1998 .

[19]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[20]  É. Pardoux,et al.  Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .

[21]  Hans Crauel,et al.  Random Point Attractors Versus Random Set Attractors , 2001 .

[22]  Arnaud Debussche,et al.  Hausdorff dimension of a random invariant set , 1998 .

[23]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[24]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[25]  Petra Boxler How to construct stochastic center manifolds on the level of vector fields , 1991 .

[26]  James C. Robinson,et al.  Upper semicontinuity of attractors for small random perturbations of dynamical systems , 1998 .

[27]  Hans Crauel,et al.  Random attractors , 1997 .

[28]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[29]  Peter Kotelenez,et al.  Comparison methods for a class of function valued stochastic partial differential equations , 1992 .