Query Performance Prediction for Pseudo-Feedback-Based Retrieval

The query performance prediction task (QPP) is estimating retrieval effectiveness in the absence of relevance judgments. Prior work has focused on prediction for retrieval methods based on surface level query-document similarities (e.g., query likelihood). We address the prediction challenge for pseudo-feedback-based retrieval methods which utilize an initial retrieval to induce a new query model; the query model is then used for a second (final) retrieval. Our suggested approach accounts for the presumed effectiveness of the initially retrieved list, its similarity with the final retrieved list and properties of the latter. Empirical evaluation demonstrates the clear merits of our approach.

[1]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[2]  Milad Shokouhi,et al.  Learning Asymmetric Co-Relevance , 2015, ICTIR.

[3]  W. Bruce Croft,et al.  Predicting query performance , 2002, SIGIR '02.

[4]  Guido Zuccon,et al.  Query Variation Performance Prediction for Systematic Reviews , 2018, SIGIR.

[5]  Oren Kurland,et al.  Back to the roots: a probabilistic framework for query-performance prediction , 2012, CIKM.

[6]  Oren Kurland,et al.  Query Performance Prediction Using Reference Lists , 2016, ACM Trans. Inf. Syst..

[7]  Haggai Roitman,et al.  Enhanced Performance Prediction of Fusion-based Retrieval , 2018, ICTIR.

[8]  Oren Kurland,et al.  Using statistical decision theory and relevance models for query-performance prediction , 2010, SIGIR.

[9]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.

[10]  Alistair Moffat,et al.  A similarity measure for indefinite rankings , 2010, TOIS.

[11]  W. Bruce Croft,et al.  A framework for selective query expansion , 2004, CIKM '04.

[12]  Oren Kurland,et al.  Query-performance prediction: setting the expectations straight , 2014, SIGIR.

[13]  ChengXiang Zhai,et al.  Revisiting the Divergence Minimization Feedback Model , 2014, CIKM.

[14]  Haggai Roitman,et al.  An Extended Query Performance Prediction Framework Utilizing Passage-Level Information , 2018, ICTIR.

[15]  Oren Kurland,et al.  Query performance prediction for IR , 2012, SIGIR '12.

[16]  Haggai Roitman,et al.  As Stable As You Are: Re-ranking Search Results using Query-Drift Analysis , 2018, HT.

[17]  W. Bruce Croft,et al.  Query performance prediction in web search environments , 2007, SIGIR.

[18]  Claudio Carpineto,et al.  A Survey of Automatic Query Expansion in Information Retrieval , 2012, CSUR.

[19]  Oren Kurland,et al.  Predicting Query Performance by Query-Drift Estimation , 2009, TOIS.

[20]  Andy Way,et al.  Improving the Reliability of Query Expansion for User-Generated Speech Retrieval Using Query Performance Prediction , 2017, CLEF.

[21]  Claudio Carpineto,et al.  Query Difficulty, Robustness, and Selective Application of Query Expansion , 2004, ECIR.