Emerging heterogeneous integrated photonic platforms on silicon

Abstract Silicon photonics has been established as a mature and promising technology for optoelectronic integrated circuits, mostly based on the silicon-on-insulator (SOI) waveguide platform. However, not all optical functionalities can be satisfactorily achieved merely based on silicon, in general, and on the SOI platform, in particular. Long-known shortcomings of silicon-based integrated photonics are optical absorption (in the telecommunication wavelengths) and feasibility of electrically-injected lasers (at least at room temperature). More recently, high two-photon and free-carrier absorptions required at high optical intensities for third-order optical nonlinear effects, inherent lack of second-order optical nonlinearity, low extinction ratio of modulators based on the free-carrier plasma effect, and the loss of the buried oxide layer of the SOI waveguides at mid-infrared wavelengths have been recognized as other shortcomings. Accordingly, several novel waveguide platforms have been developing to address these shortcomings of the SOI platform. Most of these emerging platforms are based on heterogeneous integration of other material systems on silicon substrates, and in some cases silicon is integrated on other substrates. Germanium and its binary alloys with silicon, III–V compound semiconductors, silicon nitride, tantalum pentoxide and other high-index dielectric or glass materials, as well as lithium niobate are some of the materials heterogeneously integrated on silicon substrates. The materials are typically integrated by a variety of epitaxial growth, bonding, ion implantation and slicing, etch back, spin-on-glass or other techniques. These wide range of efforts are reviewed here holistically to stress that there is no pure silicon or even group IV photonics per se. Rather, the future of the field of integrated photonics appears to be one of heterogenization, where a variety of different materials and waveguide platforms will be used for different purposes with the common feature of integrating them on a single substrate, most notably silicon.

[1]  Hybrid integration of a laser diode and high-silica multimode optical channel waveguide on silicon , 1985 .

[2]  Irina T. Sorokina,et al.  Mid-infrared coherent sources and applications , 2008 .

[3]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[4]  R. A. Soref,et al.  1.3 μm electro‐optic silicon switch , 1987 .

[5]  R. A. Soref,et al.  Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical components , 1985 .

[6]  Hong Cai,et al.  Integrated tunable CMOS laser. , 2013, Optics express.

[7]  Kent Alan Wilkinson Carey Silicon on sapphire , 1981 .

[8]  C. Xiong,et al.  Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators , 2012 .

[9]  Sasan Fathpour,et al.  Energy harvesting in silicon wavelength converters. , 2006, Optics express.

[10]  Bahram Jalali,et al.  Nonlinear absorption in silicon and the prospects of mid‐infrared silicon Raman lasers , 2006 .

[11]  D. Dimitropoulos,et al.  Prospects for Silicon Mid-IR Raman Lasers , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  B Jalali,et al.  Anti-Stokes Raman conversion in silicon waveguides. , 2003, Optics express.

[13]  S Wabnitz,et al.  Second-harmonic generation in silicon waveguides strained by silicon nitride. , 2012, Nature materials.

[14]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[15]  M. Morse,et al.  31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate. , 2007, Optics express.

[16]  C R Doerr,et al.  Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon , 2011, IEEE Photonics Technology Letters.

[17]  Michael Nagel,et al.  Pockels effect based fully integrated, strained silicon electro-optic modulator. , 2011, Optics express.

[18]  P. Crozat,et al.  42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. , 2009, Optics express.

[19]  P. G. Kryukov,et al.  Long-period fibre grating formation with 264 nm femtosecond radiation , 2002 .

[20]  Hadis Morkoç,et al.  Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si , 1986 .

[21]  S. A. Suliman Silicon Photonics for Telecommunications and Biomedicine , 2012 .

[22]  K. Hjort,et al.  Surface energy as a function of self-bias voltage in oxygen plasma wafer bonding , 2000 .

[23]  Steve Madden,et al.  Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm. , 2010, Optics express.

[24]  C. White,et al.  Ridged LiNbO/sub 3/ modulators fabricated by a novel oxygen-ion implant/wet-etch technique , 2004, Journal of Lightwave Technology.

[25]  Bahram Jalali,et al.  Can silicon change photonics? , 2008 .

[26]  Milos Nedeljkovic,et al.  Low loss silicon waveguides for the mid-infrared. , 2011, Optics express.

[27]  O. Boyraz,et al.  Self phase modulation induced spectral broadening in silicon waveguides , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[28]  P. Petroff,et al.  Nucleation and growth of GaAs on Ge and the structure of antiphase boundaries , 1986 .

[29]  N. Feng,et al.  36 GHz submicron silicon waveguide germanium photodetector. , 2011, Optics express.

[30]  Bardia Pezeshki,et al.  Wavelength‐selective waveguide photodetectors in silicon‐on‐insulator , 1996 .

[31]  S. Fathpour,et al.  Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum. , 2013, Optics express.

[32]  Guo Liang Li,et al.  A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13µm SOI CMOS , 2006, ISSCC.

[33]  Inspec,et al.  Properties of lithium niobate , 1989 .

[34]  Daniele Rezzonico,et al.  Electro–optically tunable microring resonators in lithium niobate , 2007, 0705.2392.

[35]  Tetsuo Soga,et al.  Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition , 1986 .

[36]  John Bowers,et al.  Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. , 2005, Optics express.

[37]  L. Cerutti,et al.  GaSb-Based Laser, Monolithically Grown on Silicon Substrate, Emitting at 1.55 $\mu$ m at Room Temperature , 2010, IEEE Photonics Technology Letters.

[38]  S. Koester,et al.  A 15-Gb/s 2.4-V Optical Receiver Using a Ge-on-SOI Photodiode and a CMOS IC , 2006, IEEE Photonics Technology Letters.

[39]  W. Petrich MID-INFRARED AND RAMAN SPECTROSCOPY FOR MEDICAL DIAGNOSTICS , 2001 .

[40]  H. Z. Chen,et al.  High-frequency modulation of AlGaAs/GaAs lasers grown on Si substrate by molecular beam epitaxy , 1988 .

[41]  Thomas Bende,et al.  Mid-IR Laser Applications in Medicine , 2003 .

[42]  B. Jalali,et al.  Gain Enhancement in Cladding-Pumped Silicon Raman Amplifiers , 2008, IEEE Journal of Quantum Electronics.

[43]  G. Bauer,et al.  Systematic study of PbTe (111) molecular‐beam epitaxy using reflection high‐energy electron‐diffraction intensity oscillations , 1995 .

[44]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[45]  M. Yamaguchi,et al.  Heteroepitaxial growth and characterization of InP on Si substrates , 1990 .

[46]  Andre Ivanov Silicon Nanophotonics , 2014 .

[47]  Marko Loncar,et al.  Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared , 2013, 10th International Conference on Group IV Photonics.

[48]  P. Lambeck,et al.  Present and future role of chemical mechanical polishing in wafer bonding , 1998 .

[49]  S. Fathpour,et al.  Pump-to-Stokes relative intensity noise transfer and analytical modeling of mid-infrared silicon Raman lasers. , 2012, Optics express.

[50]  David J. Moss,et al.  High Kerr nonlinearity hydrogenated amorphous silicon nanowires with low two photon absorption and high optical stability , 2014, 1405.2904.

[51]  Martin Koch,et al.  Launching surface plasmons into nanoholes in metal films , 2000 .

[52]  Graham T. Reed,et al.  Silicon Photonics: The State of the Art , 2008 .

[53]  B. Jalali,et al.  Wavelength conversion in silicon using Raman induced four-wave mixing , 2004 .

[54]  R Baets,et al.  Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs. , 2006, Optics express.

[55]  B. Jalali,et al.  Demonstration of a Mid-infrared silicon Raman amplifier. , 2007, Optics express.

[56]  D. Lang,et al.  High photoconductive gain in GexSi1−x/Si strained-layer superlattice detectors operating at λ-1.3 μm , 1986 .

[57]  M D Pelusi,et al.  Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration. , 2007, Optics express.

[58]  C Monat,et al.  Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. , 2012, Optics express.

[59]  J. L. Joppe,et al.  Hybrid integration of laser diode and monomode high contrast slab waveguide on silicon , 1991 .

[60]  Katsutoshi Izumi,et al.  C.M.O.S. devices fabricated on buried SiO2 layers formed by oxygen implantation into silicon , 1978 .

[61]  M. J. Hafich,et al.  Growth of InP on Si substrates by molecular beam epitaxy , 1989 .

[62]  Cary Gunn,et al.  CMOS Photonics for High-Speed Interconnects , 2006, IEEE Micro.

[63]  H. Miyazawa,et al.  A broadband Ti:LiNbO/sub 3/ optical modulator with a ridge structure , 1995 .

[64]  B Jalali,et al.  Influence of nonlinear absorption on Raman amplification in Silicon waveguides. , 2004, Optics express.

[65]  L. Di Cioccio,et al.  Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects , 2006, IEEE Photonics Technology Letters.

[66]  Graham T. Reed,et al.  Silicon-on-insulator optical rib waveguide loss and mode characteristics , 1994 .

[67]  P. Bhattacharya,et al.  SiGe-Si quantum-well electroabsorption modulators , 1998, IEEE Photonics Technology Letters.

[68]  William H. Steier,et al.  Lithium niobate ridge waveguides and modulators fabricated using smart guide , 2005 .

[69]  Z. Mi,et al.  Groove-Coupled InGaAs/GaAs Quantum Dot Laser/Waveguide on Silicon , 2007, Journal of Lightwave Technology.

[70]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[71]  Bahram Jalali,et al.  All optical switching and continuum generation in silicon waveguides. , 2004, Optics express.

[72]  Ke Xu,et al.  Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator , 2012, IEEE Photonics Journal.

[73]  K. Hjort,et al.  Evaluation of InP-to-silicon heterobonding , 2001 .

[74]  R Baets,et al.  Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. , 2006, Optics express.

[75]  D. Fork,et al.  Epitaxial MgO on GaAs(111) as a buffer layer for z‐cut epitaxial lithium niobate , 1993 .

[76]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[77]  W. Sohler,et al.  Lithium Niobate Ridge Waveguides Fabricated by Wet Etching , 2007, IEEE Photonics Technology Letters.

[78]  P. Dapkus,et al.  Microdisk lasers vertically coupled to output waveguides , 2002, IEEE Photonics Technology Letters.

[79]  D. Thomson,et al.  50-Gb/s Silicon Optical Modulator , 2012, IEEE Photonics Technology Letters.

[80]  M. K. Lee,et al.  Indium phosphide on silicon heteroepitaxy: Lattice deformation and strain relaxation , 1990 .

[81]  Ke Xu,et al.  Characterization of Mid-Infrared Silicon-on-Sapphire Microring Resonators With Thermal Tuning , 2012, IEEE Photonics Journal.

[82]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[83]  John N. Sherwood,et al.  First demonstration of SAW propagation in organic crystal , 1992 .

[84]  M. Bruel Silicon on insulator material technology , 1995 .

[85]  P. D. Dapkus,et al.  Ga(1−x)AlxAs/Ga(1−y)AlyAs double‐heterostructure room‐temperature lasers grown by metalorganic chemical vapor deposition , 1977 .

[86]  S. Luryi,et al.  New infrared detector on a silicon chip , 1984, IEEE Transactions on Electron Devices.

[87]  Shlomo Ruschin,et al.  Linear electro‐optic effect in sputtered polycrystalline LiNbO3 films , 1989 .

[88]  M. Berroth,et al.  Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth , 2005, IEEE Photonics Technology Letters.

[89]  Kazuhiro Ikeda,et al.  Group velocity dispersion and self phase modulation in silicon nitride waveguides , 2010 .

[90]  Yukio Sakashita,et al.  Preparation and characterization of LiNbO3 thin films produced by chemical‐vapor deposition , 1995 .

[91]  Sasan Fathpour,et al.  Heterogeneous lithium niobate photonics on silicon substrates. , 2013, Optics express.

[92]  Thomas A. Langdo,et al.  High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers , 1998 .

[93]  B. Jalali,et al.  5 x 9 integrated optical star coupler in silicon-on-insulator technology , 1996, IEEE Photonics Technology Letters.

[94]  T. Schlesinger,et al.  The role of Si3N4 layers in determining the texture of sputter deposited LiNbO3 thin films , 1996 .

[95]  C. Gunn,et al.  A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13/spl mu/m SOI CMOS , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[96]  Pavlos G Lagoudakis,et al.  Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window. , 2009, Optics letters.

[97]  P Jeppesen,et al.  Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides. , 2011, Optics express.

[98]  A. W. Pryce,et al.  Atmospheric transmission in the 1 to 14μ region , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[99]  Bahram Jalali,et al.  Observation of Raman emission in silicon waveguides at 1.54 microm. , 2002, Optics express.

[100]  A. Levi,et al.  Si-based receivers for optical data links , 1994 .

[101]  Yu-Chi Chang,et al.  Low-loss germanium strip waveguides on silicon for the mid-infrared. , 2012, Optics letters.

[102]  Koji Yamada,et al.  Monolithic integration and synchronous operation of germanium photodetectors and silicon variable optical attenuators. , 2010, Optics express.

[103]  Miles V. Klein,et al.  Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy , 1985 .

[104]  Bernard Aspar,et al.  InP microdisk lasers on silicon wafer: CW room temperature operation at 1.6 [micro sign]m , 2001 .

[105]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[106]  Gianlorenzo Masini,et al.  Ge-on-Si approaches to the detection of near-infrared light , 1999 .

[107]  Herbert Spencer,et al.  Progress: Its Law and Cause. , 1875, Essays: Scientific, Political and Speculative.

[108]  D Van Thourhout,et al.  Heterogeneously integrated III-V/silicon distributed feedback lasers. , 2013, Optics letters.

[109]  B. Jalali,et al.  Two-Photon Photovoltaic Effect in Silicon , 2007, IEEE Journal of Quantum Electronics.

[110]  Sasan Fathpour,et al.  Electrical control of parametric processes in silicon waveguides. , 2008, Optics express.

[111]  M. Watts,et al.  Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. , 2011, Optics express.

[112]  Ivo Rendina,et al.  Advances in silicon-on-insulator optoelectronics , 1998 .

[113]  Sasan Fathpour,et al.  Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics , 2014 .

[114]  Martin Kittler,et al.  Germanium tin: silicon photonics toward the mid-infrared , 2013 .

[115]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[116]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[117]  P. Günter,et al.  Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding , 2004 .

[118]  T. Sakamoto,et al.  16-level quadrature amplitude modulation by monolithic quad-parallel Mach-Zehnder optical modulator , 2010 .

[119]  D. Shepherd,et al.  Nd:Ta2O5 rib waveguide lasers , 2005 .

[120]  Chao-Yi Tai,et al.  Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation. , 2004, Optics express.

[121]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[122]  M. Wood,et al.  Hybrid silicon and lithium niobate electro-optical ring modulator , 2014 .

[123]  S Sánchez,et al.  Spontaneous direct bonding of thick silicon nitride , 1997 .

[124]  H. Tsang,et al.  Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides , 2004 .

[125]  O. Mitomi,et al.  Millimeter-wave Ti:LiNbO/sub 3/ optical modulators , 1998 .

[126]  Sasan Fathpour,et al.  Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics , 2013 .

[127]  R. W. Waynant,et al.  Mid-infrared Biomedical Applications , 2006 .

[128]  S. Valette,et al.  Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides , 1992 .

[129]  Sorin Cristoloveanu,et al.  Frontiers of silicon-on-insulator , 2003 .

[130]  G. Duan,et al.  Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser. , 2013, Optics express.

[131]  Richard A. Soref,et al.  Silicon waveguided components for the long-wave infrared regionThis article was submitted to the spe , 2006 .

[132]  Sasan Fathpour,et al.  Limitations of active carrier removal in silicon Raman amplifiers and lasers , 2005 .

[133]  Guo-Qiang Lo,et al.  50-Gb/s silicon optical modulator with traveling-wave electrodes. , 2013, Optics express.

[134]  H. Hatakeyama,et al.  Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps , 2001 .

[135]  B. Jalali,et al.  Parametric Raman wavelength conversion in scaled silicon waveguides , 2005, Journal of Lightwave Technology.

[136]  I. Barry,et al.  Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion , 1999 .

[137]  Avi Zadok,et al.  Electrically pumped hybrid evanescent Si/InGaAsP lasers. , 2009, Optics letters.

[138]  Way-Seen Wang,et al.  A Novel Wet-Etching Method Using Joint Proton Source in LiNbO3 , 2009 .

[139]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[140]  B. Jalali,et al.  SiGe waveguide photodetectors grown by rapid thermal chemical vapour deposition , 1992 .

[141]  S. Fathpour,et al.  High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics , 2013 .

[142]  T. Tsuchizawa,et al.  Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[143]  Milan M. Milosevic,et al.  Silicon Photonics: The Evolution of Integration , 2011 .

[144]  H. Morkoç,et al.  Investigation of GaAs/(Al,Ga)As multiple quantum wells grown on Ge and Si substrates by molecular‐beam epitaxy , 1987 .

[145]  Bahram Jalali,et al.  Integrated optical directional couplers in silicon-on-insulator , 1995 .

[146]  S. Chu,et al.  High Performance, Low-loss Nonlinear Integrated Glass Waveguides , 2009 .

[147]  K. Vodopyanov,et al.  Solid-state mid-infrared laser sources , 2003 .

[148]  Tao Chu,et al.  Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators. , 2009, Optics express.

[149]  K. Hjort,et al.  Oxidation and Induced Damage in Oxygen Plasma In Situ Wafer Bonding , 2000 .

[150]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[151]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[152]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[153]  A. Krier Mid-infrared Semiconductor Optoelectronics , 2006 .

[154]  P. D. Dapkus,et al.  Room‐temperature laser operation of quantum‐well Ga(1−x)AlxAs‐GaAs laser diodes grown by metalorganic chemical vapor deposition , 1978 .

[155]  Raluca Dinu,et al.  Silicon-Organic Hybrid Electro-Optical Devices , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[156]  S. Chuang,et al.  Four-wave mixing in a distributed-feedback laser , 1997 .

[157]  Gunther Roelkens,et al.  Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared. , 2014, Optics express.

[158]  R. Soref,et al.  All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm , 1986 .

[159]  P. D. Dapkus,et al.  Room‐temperature operation of distributed‐Bragg‐confinement Ga1−xAlxAs‐GaAs lasers grown by metalorganic chemical vapor deposition , 1978 .

[160]  Huiying Hu,et al.  Plasma etching of proton-exchanged lithium niobate , 2006 .

[161]  Lord Rayleigh A Study of Glass Surfaces in Optical Contact , 1936 .

[162]  S. Stiffler,et al.  Silicon-on-insulator (SOI) by bonding and ETCH-back , 1985, 1985 International Electron Devices Meeting.

[163]  M. Shimbo,et al.  Silicon‐to‐silicon direct bonding method , 1986 .

[164]  Dazeng Feng,et al.  High-Speed GeSi Electroabsorption Modulator on the SOI Waveguide Platform , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[165]  T. Noh,et al.  LOW-TEMPERATURE GROWTH OF EPITAXIAL LINBO3 FILMS ON SAPPHIRE (0001) SUBSTRATES USING PULSED LASER DEPOSITION , 1995 .

[166]  W. Steier,et al.  Hybrid Si-LiNbO₃ microring electro-optically tunable resonators for active photonic devices. , 2011, Optics letters.

[167]  Xiaolian Liu,et al.  Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm , 1995 .

[168]  K. Ohira,et al.  On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide. , 2010, Optics express.

[169]  Karthik Narayanan,et al.  Optical nonlinearities in hydrogenated-amorphous silicon waveguides. , 2010, Optics express.

[170]  Simon Thomas Surface enrichment of In in evaporated Au–In films , 1974 .

[171]  Wolfram Pernice,et al.  Integrated GaN photonic circuits on silicon (100) for second harmonic generation. , 2011, Optics express.

[172]  R. Jain,et al.  Degenerate four‐wave mixing of 10.6‐μm radiation in Hg1−xCdxTe , 1980 .

[173]  B. Unal Nd : Ta 2 O 5 Rib Waveguide Lasers , 2005 .

[174]  A. Yamada,et al.  Soi by wafer bonding with spin-on glass as adhesive , 1987 .

[175]  M. Umeno,et al.  Effect of InGaAs/InP strained layer superlattice in InP-on-Si , 1991 .

[176]  Richard A. Soref,et al.  Silicon-based optoelectronics , 1993, Proc. IEEE.

[177]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[178]  K. Kim,et al.  Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol‐gel process , 1996 .

[179]  S. Fathpour,et al.  Noise Figure in Near-Infrared Amorphous and Mid-Infrared Crystalline Silicon Optical Parametric Amplifiers , 2013, Journal of Lightwave Technology.

[180]  Shinsuke Tanaka,et al.  High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. , 2012, Optics express.

[181]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[182]  R. Soref,et al.  Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2/ , 1991 .

[183]  Sasan Fathpour,et al.  Electrical tuning of birefringence in silicon waveguides , 2008 .

[184]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[185]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[186]  Klas Hjort,et al.  Plasma-assisted InP-to-Si low temperature wafer bonding , 2002 .

[187]  M. M. Howerton,et al.  Fully packaged, broad-band LiNbO3 modulator with low drive voltage , 2000, IEEE Photonics Technology Letters.

[188]  Kazuhiro Ikeda,et al.  Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides. , 2008, Optics express.

[189]  S. Fathpour,et al.  Silicon on lithium niobate: A hybrid electro-optical platform for near- and mid-infrared photonics , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[190]  A. Knights,et al.  Silicon Photonics: An Introduction , 2004 .

[191]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[192]  Pallab Bhattacharya,et al.  Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon. , 2008, Optics express.

[193]  G. Burbach,et al.  Low loss singlemode optical waveguides with large cross-section in silicon-on-insulator , 1991 .

[194]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[195]  T. Baehr‐Jones,et al.  Silicon-on-sapphire integrated waveguides for the mid-infrared. , 2009, Optics express.

[196]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[197]  R. Baumann,et al.  Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering , 1992 .

[198]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[199]  Sasan Fathpour,et al.  Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates. , 2014, Optics letters.

[200]  B. Jalali,et al.  Observation of stimulated Raman amplification in silicon waveguides , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[201]  Sasan Fathpour,et al.  Energy Harvesting in Silicon Raman Amplifiers , 2006 .

[202]  A. A. Studna,et al.  Chemical etching and cleaning procedures for Si, Ge, and some III‐V compound semiconductors , 1981 .

[203]  Richard M. Osgood,et al.  Fabrication of single-crystal lithium niobate films by crystal ion slicing , 1998 .

[204]  Sarita V. Adve,et al.  Relyzer: Application Resiliency Analyzer for Transient Faults , 2013, IEEE Micro.

[205]  Hon Ki Tsang,et al.  Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides. , 2006 .

[206]  R.L. Anderson Experiments on Ge-GaAs heterojunctions , 1962, IRE Transactions on Electron Devices.

[207]  S. Fathpour,et al.  Energy harvesting in silicon optical modulators. , 2006, Optics express.

[208]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[209]  Way-Seen Wang,et al.  A novel wet-etching method using joint proton source in LiNbO/sub 3/ , 2006, IEEE Photonics Technology Letters.

[210]  A. Yamada,et al.  Bonding silicon wafer to silicon nitride with spin-on glass as adhesive , 1987 .