Complete genome sequence of the Q-fever pathogen Coxiella burnetii

The 1,995,275-bp genome of Coxiella burnetii, Nine Mile phase I RSA493, a highly virulent zoonotic pathogen and category B bioterrorism agent, was sequenced by the random shotgun method. This bacterium is an obligate intracellular acidophile that is highly adapted for life within the eukaryotic phagolysosome. Genome analysis revealed many genes with potential roles in adhesion, invasion, intracellular trafficking, host-cell modulation, and detoxification. A previously uncharacterized 13-member family of ankyrin repeat-containing proteins is implicated in the pathogenesis of this organism. Although the lifestyle and parasitic strategies of C. burnetii resemble that of Rickettsiae and Chlamydiae, their genome architectures differ considerably in terms of presence of mobile elements, extent of genome reduction, metabolic capabilities, and transporter profiles. The presence of 83 pseudogenes displays an ongoing process of gene degradation. Unlike other obligate intracellular bacteria, 32 insertion sequences are found dispersed in the chromosome, indicating some plasticity in the C. burnetii genome. These analyses suggest that the obligate intracellular lifestyle of C. burnetii may be a relatively recent innovation.

[1]  H. R. Cox,et al.  A filter-passing Infectious Agent isolated from Ticks. I. Isolation from Dermacentor andersoni, Reactions in Animals, and Filtration Experiments. , 1938 .

[2]  W. S. Gochenour,et al.  AIRBORNE Q FEVER , 1961, Bacteriological reviews.

[3]  C. Franti,et al.  A survey of Q fever (Coxiella burnetii) in California dairy cows. , 1974, American journal of veterinary research.

[4]  J. Haigh The accumulation of deleterious genes in a population--Muller's Ratchet. , 1978, Theoretical population biology.

[5]  T. Hackstadt,et al.  Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Hackstadt,et al.  pH dependence of the Coxiella burnetii glutamate transport system , 1983, Journal of bacteriology.

[7]  A. Barrett Proteolytic and other metabolic pathways in lysosomes. , 1984, Biochemical Society transactions.

[8]  H. Mayer,et al.  3-C-branched aldoses in lipopolysaccharide of phase I Coxiella burnetii and their role as immunodominant factors. , 1985, European journal of biochemistry.

[9]  C. Kirkbride,et al.  Ovine Abortion Due to Coxiella Burnetii Infection , 1989, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc.

[10]  C. Woese,et al.  Phylogenetic diversity of the Rickettsiae , 1989, Journal of bacteriology.

[11]  M. Yeaman,et al.  Unexpected Antibiotic Susceptibility of a Chronic Isolate of Coxiella burnetii a , 1990, Annals of the New York Academy of Sciences.

[12]  W. Baumgärtner,et al.  Histological and immunocytochemical characterization of Coxiella burnetii-associated lesions in the murine uterus and placenta , 1992, Infection and immunity.

[13]  Hoover,et al.  A Coxiella burnetti repeated DNA element resembling a bacterial insertion sequence , 1992, Journal of bacteriology.

[14]  R. Christner,et al.  Acid phosphatase activity in Coxiella burnetii: a possible virulence factor , 1993, Infection and immunity.

[15]  F. Schmidt,et al.  [Follow-up studies of the detection of IgG1 antibodies to Coxiella burnetii in blood and milk from cattle in relation to the reproductive cycle and milk production]. , 1994, DTW. Deutsche tierarztliche Wochenschrift.

[16]  Manuel G. Claros,et al.  TopPred II: an improved software for membrane protein structure predictions , 1994, Comput. Appl. Biosci..

[17]  S. Sanford,et al.  Coxiella burnetii (Q fever) abortion storms in goat herds after attendance at an annual fair. , 1994, The Canadian veterinary journal = La revue veterinaire canadienne.

[18]  Y. Mo,et al.  Characterization of the 23S and 5S rRNA genes of Coxiella burnetii and identification of an intervening sequence within the 23S rRNA gene , 1995, Journal of bacteriology.

[19]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[20]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[21]  J Hacker,et al.  Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution , 1997, Molecular microbiology.

[22]  R J Roberts,et al.  Homing endonucleases: keeping the house in order. , 1997, Nucleic acids research.

[23]  D. Raoult,et al.  Reassessment of the taxonomic position of Rickettsiella grylli. , 1997, International journal of systematic bacteriology.

[24]  G. Baljer,et al.  Physical and Genetic Map of the Obligate Intracellular Bacterium Coxiella burnetii , 1998, Journal of bacteriology.

[25]  C. Kurland,et al.  Reductive evolution of resident genomes. , 1998, Trends in microbiology.

[26]  C. O'Connor,et al.  BipA: a tyrosine‐phosphorylated GTPase that mediates interactions between enteropathogenic Escherichia coli (EPEC) and epithelial cells , 1998, Molecular microbiology.

[27]  R. W. Davis,et al.  Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. , 1998, Science.

[28]  D. Raoult,et al.  Coxiella burnetii Induces Reorganization of the Actin Cytoskeleton in Human Monocytes , 1998, Infection and Immunity.

[29]  R. Heinzen,et al.  Developmental biology of Coxiella burnettii. , 1999, Trends in microbiology.

[30]  H. Shuman,et al.  Possible origin of the Legionella pneumophila virulence genes and their relation to Coxiella burnetii , 1999, Molecular microbiology.

[31]  S. Andersson,et al.  Obligate intracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis , 1999, FEBS letters.

[32]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[33]  Edward Regis,et al.  The Biology of Doom: The History of America's Secret Germ Warfare Project , 1999 .

[34]  A. Morabia,et al.  Long term vascular complications of Coxiella burnetii infection in Switzerland: cohort study , 1999, BMJ.

[35]  D. Raoult,et al.  Subversion of monocyte functions by coxiella burnetii: impairment of the cross-talk between alphavbeta3 integrin and CR3. , 1999, Journal of immunology.

[36]  V. Betin,et al.  Ankyrin: structure, properties, and functions. , 2000, Biochemistry. Biokhimiia.

[37]  D. Liao Gene Conversion Drives Within Genic Sequences: Concerted Evolution of Ribosomal RNA Genes in Bacteria and Archaea , 2000, Journal of Molecular Evolution.

[38]  J. Bakken,et al.  ankA: an Ehrlichia phagocytophila Group Gene Encoding a Cytoplasmic Protein Antigen with Ankyrin Repeats , 2000, Infection and Immunity.

[39]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[40]  J. Cirillo,et al.  Identification of novel loci involved in entry by Legionella pneumophila. , 2000, Microbiology.

[41]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[42]  N. Cianciotto Pathogenicity of Legionella pneumophila. , 2001, International journal of medical microbiology : IJMM.

[43]  J. Weissenbach,et al.  Mechanisms of Evolution in Rickettsia conorii and R. prowazekii , 2001, Science.

[44]  R. Seshadri,et al.  Characterization of a Stress-Induced Alternate Sigma Factor, RpoS, of Coxiella burnetii and Its Expression during the Development Cycle , 2001, Infection and Immunity.

[45]  Fan Yang,et al.  TIGRFAMs: a protein family resource for the functional identification of proteins , 2001, Nucleic Acids Res..

[46]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[47]  H. Caldwell,et al.  Molecular Basis Defining Human Chlamydia trachomatis Tissue Tropism , 2002, The Journal of Biological Chemistry.

[48]  H. A. Thompson,et al.  Permeability of Coxiella burnetii to ribonucleosides. , 2002, Microbiology.

[49]  J. Beattie,et al.  Chronic fatigue following infection by Coxiella burnetii (Q fever): ten-year follow-up of the 1989 UK outbreak cohort. , 2002, QJM : monthly journal of the Association of Physicians.

[50]  R. Mortara,et al.  Mouse resident peritoneal macrophages partially control in vitro infection with Coxiella burnetii phase II. , 2002, Microbes and infection.

[51]  N. Moran,et al.  50 Million Years of Genomic Stasis in Endosymbiotic Bacteria , 2002, Science.

[52]  H. Willems,et al.  Analysis of the entire nucleotide sequence of the cryptic plasmid QpH1 fromCoxiella burnetii , 1994, European Journal of Epidemiology.