Fast integer least-squares estimation for GNSS high-dimensional ambiguity resolution using lattice theory

GNSS ambiguity resolution is the key issue in the high-precision relative geodetic positioning and navigation applications. It is a problem of integer programming plus integer quality evaluation. Different integer search estimation methods have been proposed for the integer solution of ambiguity resolution. Slow rate of convergence is the main obstacle to the existing methods where tens of ambiguities are involved. Herein, integer search estimation for the GNSS ambiguity resolution based on the lattice theory is proposed. It is mathematically shown that the closest lattice point problem is the same as the integer least-squares (ILS) estimation problem and that the lattice reduction speeds up searching process. We have implemented three integer search strategies: Agrell, Eriksson, Vardy, Zeger (AEVZ), modification of Schnorr–Euchner enumeration (M-SE) and modification of Viterbo-Boutros enumeration (M-VB). The methods have been numerically implemented in several simulated examples under different scenarios and over 100 independent runs. The decorrelation process (or unimodular transformations) has been first used to transform the original ILS problem to a new one in all simulations. We have then applied different search algorithms to the transformed ILS problem. The numerical simulations have shown that AEVZ, M-SE, and M-VB are about 320, 120 and 50 times faster than LAMBDA, respectively, for a search space of dimension 40. This number could change to about 350, 160 and 60 for dimension 45. The AEVZ is shown to be faster than MLAMBDA by a factor of 5. Similar conclusions could be made using the application of the proposed algorithms to the real GPS data.

[1]  Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. (Continuation). , 1850 .

[2]  C. Hermite Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. , 1850 .

[3]  A. Korkine,et al.  Sur les formes quadratiques , 1873 .

[4]  H. Minkowski,et al.  Diskontinuitätsbereich für arithmetische Äquivalenz. , 1905 .

[5]  R. R. Coveyou,et al.  Fourier Analysis of Uniform Random Number Generators , 1967, JACM.

[6]  Michael E. Pohst,et al.  On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications , 1981, SIGS.

[7]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[8]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[9]  Ravi Kannan,et al.  Improved algorithms for integer programming and related lattice problems , 1983, STOC.

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[12]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[13]  R. Kannan ALGORITHMIC GEOMETRY OF NUMBERS , 1987 .

[14]  Gerhard Beutler,et al.  Rapid static positioning based on the fast ambiguity resolution approach , 1990 .

[15]  Claus-Peter Schnorr,et al.  Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.

[16]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[17]  P. Teunissen Least-squares estimation of the integer GPS ambiguities , 1993 .

[18]  P. Teunissen A new method for fast carrier phase ambiguity estimation , 1994, Proceedings of 1994 IEEE Position, Location and Navigation Symposium - PLANS'94.

[19]  D. S. Chen,et al.  Development of a fast ambiguity search filtering (FASF) method for GPS carrier phase ambiguity resolution , 1994 .

[20]  G. Lachapelle,et al.  A Comparison of the FASF and Least- Squares Search Algorithms for on-the-Fly Ambiguity Resolution , 1995 .

[21]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[22]  Christian Tiberius,et al.  Integer Ambiguity Estimation with the Lambda Method , 1996 .

[23]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[24]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[25]  E. Grafarend,et al.  Statistics and geometry of the eigenspectra of three-dimensional second-rank symmetric random tensors , 1996 .

[26]  Peter Teunissen,et al.  An analytical study of ambiguity decorrelation using dual frequency code and carrier phase , 1996 .

[27]  Peter Teunissen,et al.  GPS for geodesy , 1996 .

[28]  P. Teunissen,et al.  The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans , 1997 .

[29]  Peter Teunissen,et al.  A canonical theory for short GPS baselines. Part IV: precision versus reliability , 1997 .

[30]  Peter Teunissen,et al.  GPS Carrier Phase Ambiguity Fixing Concepts , 1998 .

[31]  Stephen P. Boyd,et al.  Integer parameter estimation in linear models with applications to GPS , 1998, IEEE Trans. Signal Process..

[32]  P. Teunissen Success probability of integer GPS ambiguity rounding and bootstrapping , 1998 .

[33]  H. Hsu,et al.  A new approach to GPS ambiguity decorrelation , 1999 .

[34]  Peiliang Xu,et al.  Spectral theory of constrained second-rank symmetric random tensors , 1999 .

[35]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[36]  Richard B. Langley,et al.  A search space optimization technique for improving ambiguity resolution and computational efficiency , 2000 .

[37]  E. Grafarend Mixed Integer-Real Valued Adjustment (IRA) Problems: GPS Initial Cycle Ambiguity Resolution by Means of the LLL Algorithm , 2000, GPS Solutions.

[38]  Peiliang Xu Random simulation and GPS decorrelation , 2001 .

[39]  Jacques Stern,et al.  The Two Faces of Lattices in Cryptology , 2001, CaLC.

[40]  Tim Springer,et al.  New IGS Station and Satellite Clock Combination , 2001, GPS Solutions.

[41]  Shafi Goldwasser,et al.  Complexity of lattice problems , 2002 .

[42]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[43]  Peiliang Xu,et al.  Isotropic probabilistic models for directions, planes and referential systems , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[44]  Wai Ho Mow,et al.  Universal lattice decoding: principle and recent advances , 2003, Wirel. Commun. Mob. Comput..

[45]  Giuseppe Caire,et al.  On maximum-likelihood detection and the search for the closest lattice point , 2003, IEEE Trans. Inf. Theory.

[46]  Damien Stehlé,et al.  Low-Dimensional Lattice Basis Reduction Revisited ( Extended Abstract ) , 2004 .

[47]  Venkatesan Guruswami,et al.  The complexity of the covering radius problem , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[48]  Babak Hassibi,et al.  On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.

[49]  Georgios B. Giannakis,et al.  Sphere decoding algorithms with improved radius search , 2005, IEEE Trans. Commun..

[50]  X. Chang,et al.  MLAMBDA: a modified LAMBDA method for integer least-squares estimation , 2005 .

[51]  Peiliang Xu,et al.  Voronoi cells, probabilistic bounds, and hypothesis testing in mixed integer linear models , 2006, IEEE Transactions on Information Theory.

[52]  Damien Stehlé,et al.  Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices , 2000, ICALP.

[53]  Peter Buist The Baseline Constrained LAMBDA Method for Single Epoch, Single Frequency Attitude Determination Applications , 2007 .

[54]  Ron Steinfeld,et al.  Lattice-Based Threshold Changeability for Standard Shamir Secret-Sharing Schemes , 2007, IEEE Trans. Inf. Theory.

[55]  Damien Stehlé,et al.  Rigorous and Efficient Short Lattice Vectors Enumeration , 2008, ASIACRYPT.

[56]  Damien Stehlé,et al.  An LLL Algorithm with Quadratic Complexity , 2009, SIAM J. Comput..

[57]  Œuvres de Charles Hermite: Lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres , 2009 .

[58]  M. Elizabeth Cannon,et al.  Mixed integer programming for the resolution of GPS carrier phase ambiguities , 2010, ArXiv.

[59]  Yangmei Zhou A new practical approach to GNSS high-dimensional ambiguity decorrelation , 2011 .