Fast integer least-squares estimation for GNSS high-dimensional ambiguity resolution using lattice theory
暂无分享,去创建一个
[1] Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. (Continuation). , 1850 .
[2] C. Hermite. Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. , 1850 .
[3] A. Korkine,et al. Sur les formes quadratiques , 1873 .
[4] H. Minkowski,et al. Diskontinuitätsbereich für arithmetische Äquivalenz. , 1905 .
[5] R. R. Coveyou,et al. Fourier Analysis of Uniform Random Number Generators , 1967, JACM.
[6] Michael E. Pohst,et al. On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications , 1981, SIGS.
[7] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[8] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[9] Ravi Kannan,et al. Improved algorithms for integer programming and related lattice problems , 1983, STOC.
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] U. Fincke,et al. Improved methods for calculating vectors of short length in a lattice , 1985 .
[12] László Babai,et al. On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..
[13] R. Kannan. ALGORITHMIC GEOMETRY OF NUMBERS , 1987 .
[14] Gerhard Beutler,et al. Rapid static positioning based on the fast ambiguity resolution approach , 1990 .
[15] Claus-Peter Schnorr,et al. Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.
[16] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[17] P. Teunissen. Least-squares estimation of the integer GPS ambiguities , 1993 .
[18] P. Teunissen. A new method for fast carrier phase ambiguity estimation , 1994, Proceedings of 1994 IEEE Position, Location and Navigation Symposium - PLANS'94.
[19] D. S. Chen,et al. Development of a fast ambiguity search filtering (FASF) method for GPS carrier phase ambiguity resolution , 1994 .
[20] G. Lachapelle,et al. A Comparison of the FASF and Least- Squares Search Algorithms for on-the-Fly Ambiguity Resolution , 1995 .
[21] P. Teunissen. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .
[22] Christian Tiberius,et al. Integer Ambiguity Estimation with the Lambda Method , 1996 .
[23] Bradford W. Parkinson,et al. Global positioning system : theory and applications , 1996 .
[24] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[25] E. Grafarend,et al. Statistics and geometry of the eigenspectra of three-dimensional second-rank symmetric random tensors , 1996 .
[26] Peter Teunissen,et al. An analytical study of ambiguity decorrelation using dual frequency code and carrier phase , 1996 .
[27] Peter Teunissen,et al. GPS for geodesy , 1996 .
[28] P. Teunissen,et al. The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans , 1997 .
[29] Peter Teunissen,et al. A canonical theory for short GPS baselines. Part IV: precision versus reliability , 1997 .
[30] Peter Teunissen,et al. GPS Carrier Phase Ambiguity Fixing Concepts , 1998 .
[31] Stephen P. Boyd,et al. Integer parameter estimation in linear models with applications to GPS , 1998, IEEE Trans. Signal Process..
[32] P. Teunissen. Success probability of integer GPS ambiguity rounding and bootstrapping , 1998 .
[33] H. Hsu,et al. A new approach to GPS ambiguity decorrelation , 1999 .
[34] Peiliang Xu,et al. Spectral theory of constrained second-rank symmetric random tensors , 1999 .
[35] Emanuele Viterbo,et al. A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.
[36] Richard B. Langley,et al. A search space optimization technique for improving ambiguity resolution and computational efficiency , 2000 .
[37] E. Grafarend. Mixed Integer-Real Valued Adjustment (IRA) Problems: GPS Initial Cycle Ambiguity Resolution by Means of the LLL Algorithm , 2000, GPS Solutions.
[38] Peiliang Xu. Random simulation and GPS decorrelation , 2001 .
[39] Jacques Stern,et al. The Two Faces of Lattices in Cryptology , 2001, CaLC.
[40] Tim Springer,et al. New IGS Station and Satellite Clock Combination , 2001, GPS Solutions.
[41] Shafi Goldwasser,et al. Complexity of lattice problems , 2002 .
[42] Alexander Vardy,et al. Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.
[43] Peiliang Xu,et al. Isotropic probabilistic models for directions, planes and referential systems , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[44] Wai Ho Mow,et al. Universal lattice decoding: principle and recent advances , 2003, Wirel. Commun. Mob. Comput..
[45] Giuseppe Caire,et al. On maximum-likelihood detection and the search for the closest lattice point , 2003, IEEE Trans. Inf. Theory.
[46] Damien Stehlé,et al. Low-Dimensional Lattice Basis Reduction Revisited ( Extended Abstract ) , 2004 .
[47] Venkatesan Guruswami,et al. The complexity of the covering radius problem , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..
[48] Babak Hassibi,et al. On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.
[49] Georgios B. Giannakis,et al. Sphere decoding algorithms with improved radius search , 2005, IEEE Trans. Commun..
[50] X. Chang,et al. MLAMBDA: a modified LAMBDA method for integer least-squares estimation , 2005 .
[51] Peiliang Xu,et al. Voronoi cells, probabilistic bounds, and hypothesis testing in mixed integer linear models , 2006, IEEE Transactions on Information Theory.
[52] Damien Stehlé,et al. Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices , 2000, ICALP.
[53] Peter Buist. The Baseline Constrained LAMBDA Method for Single Epoch, Single Frequency Attitude Determination Applications , 2007 .
[54] Ron Steinfeld,et al. Lattice-Based Threshold Changeability for Standard Shamir Secret-Sharing Schemes , 2007, IEEE Trans. Inf. Theory.
[55] Damien Stehlé,et al. Rigorous and Efficient Short Lattice Vectors Enumeration , 2008, ASIACRYPT.
[56] Damien Stehlé,et al. An LLL Algorithm with Quadratic Complexity , 2009, SIAM J. Comput..
[57] Œuvres de Charles Hermite: Lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres , 2009 .
[58] M. Elizabeth Cannon,et al. Mixed integer programming for the resolution of GPS carrier phase ambiguities , 2010, ArXiv.
[59] Yangmei Zhou. A new practical approach to GNSS high-dimensional ambiguity decorrelation , 2011 .