REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
暂无分享,去创建一个
[1] J. Yong,et al. Forward–backward stochastic differential equations with nonsmooth coefficients , 2000 .
[2] S. Hamadène. Équations différentielles stochastiques rétrogrades : le cas localement lipschitzien , 1996 .
[3] X. Zhou,et al. Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .
[4] Ying Hu. On the existence of solution to one–dimensional forward–backward sdes , 2000 .
[5] Pierre-Louis Lions,et al. Applications of Malliavin calculus to Monte Carlo methods in finance , 1999, Finance Stochastics.
[6] S. Shreve,et al. Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] J. Ma,et al. Forward-Backward Stochastic Differential Equations and their Applications , 2007 .
[8] S. Peng,et al. Backward stochastic differential equations and quasilinear parabolic partial differential equations , 1992 .
[9] Ying Hu. On the solution of forward-backward SDEs with monotone and continuous coefficients , 2000 .
[10] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[11] S. Peng,et al. Backward Stochastic Differential Equations in Finance , 1997 .
[12] Hans‐Peter Bermin. Hedging Options: The Malliavin Calculus Approach versus the Δ‐Hedging Approach , 2003 .
[13] J. Yong,et al. Solving forward-backward stochastic differential equations explicitly — a four step scheme , 1994 .
[14] J. Bismut,et al. Théorie probabiliste du contrôle des diffusions , 1976 .