Diffusion-based non-uniform regularization for variational shape deformation

Abstract Regularization is a typical technique to correct the discontinuity artifacts at the control points in shape deformation. A regularizer with higher weights is required if the deformation is large, which will unfortunately distort the entire shape. In this work, we present a non-uniform regularization technique based on a shape-aware scalar field obtained from diffusion, which allows user to control the magnitude and range of the regularizer around specific control points. Experimental results show that shapes are deformed smoothly and no over-regularized artifact is observed with our non-uniform regularizer.

[1]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[2]  Takeo Igarashi,et al.  As-rigid-as-possible shape manipulation , 2005, ACM Trans. Graph..

[3]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[4]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[5]  M. Ben-Chen,et al.  A multi-resolution approach to heat kernels on discrete surfaces , 2010, SIGGRAPH 2010.

[6]  Olga Sorkine-Hornung,et al.  Locally Injective Mappings , 2013 .

[7]  Facundo Mémoli,et al.  Spectral Gromov-Wasserstein distances for shape matching , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[8]  S. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, SIGGRAPH 2005.

[9]  Luiz Velho,et al.  A Hierarchical Segmentation of Articulated Bodies , 2008, Comput. Graph. Forum.

[10]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[11]  E. Grinspun,et al.  Discrete laplace operators: no free lunch , 2007 .

[12]  Hong Qin,et al.  PDE-Based Medial Axis Extraction and Shape Manipulation of Arbitrary Meshes , 2008, J. Syst. Sci. Complex..

[13]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[14]  Hans-Peter Seidel,et al.  Regularized Harmonic Surface Deformation , 2014, ArXiv.

[15]  Craig Gotsman,et al.  A multi-resolution approach to heat kernels on discrete surfaces , 2010, ACM Trans. Graph..

[16]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[17]  Ronen Basri,et al.  Controlling singular values with semidefinite programming , 2014, ACM Trans. Graph..

[18]  Olga Sorkine-Hornung,et al.  Fast automatic skinning transformations , 2012, ACM Trans. Graph..

[19]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[20]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[21]  Christian Rössl,et al.  Smoothed Quadratic Energies on Meshes , 2014, ACM Trans. Graph..

[22]  Michael M. Kazhdan,et al.  Interactive and anisotropic geometry processing using the screened Poisson equation , 2011, ACM Trans. Graph..

[23]  Jernej Barbic,et al.  Linear subspace design for real-time shape deformation , 2015, ACM Trans. Graph..

[24]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[25]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[26]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[27]  Mark Pauly,et al.  Shape‐Up: Shaping Discrete Geometry with Projections , 2012, Comput. Graph. Forum.

[28]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[29]  Denis Zorin,et al.  Strict minimizers for geometric optimization , 2014, ACM Trans. Graph..

[30]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[31]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.