Guaranteed convergence in ground state multiconfigurational self‐consistent field calculations

We show how an optimization constraint algorithm of Fletcher that guarantees convergence to the lowest state of a given symmetry may be practically implemented in a multiconfigurational self‐consistent field (MCSCF) calculation. Other MCSCF procedures in current use have not been proven mathematically to guarantee convergence. Calculations on the ground states of N2 and CO show that rapid and efficient convergence is obtained with the Fletcher restricted step size algorithm.

[1]  V. R. Saunders,et al.  On methods for converging open-shell Hartree-Fock wave-functions , 1974 .

[2]  W. Goddard,et al.  Excited States of H2O using improved virtual orbitals , 1969 .

[3]  Isaiah Shavitt,et al.  Comparison of the convergence characteristics of some iterative wave function optimization methods , 1982 .

[4]  J. Olsen,et al.  Cubic contributions in multiconfigurational self‐consistent‐field (MCSCF) calculations , 1982 .

[5]  Byron H. Lengsfield,et al.  General second order MCSCF theory: A density matrix directed algorithm , 1980 .

[6]  J. Olsen,et al.  Multiconfigurational Hartree–Fock studies of avoided curve crossing using the Newton–Raphson technique , 1982 .

[7]  D. Yeager,et al.  Mode damping in multiconfigurational Hartree–Fock procedures , 1980 .

[8]  Danny L. Yeager,et al.  Convergency studies of second and approximate second order multiconfigurational Hartree−Fock procedures , 1979 .

[9]  E. Dalgaard A quadratically convergent reference state optimization procedure , 1979 .

[10]  P. Jørgensen,et al.  A numerical study of the convergency of second and approximate second-order multiconfiguration Hartree-Fock procedures , 1980 .

[11]  P. Joergensen,et al.  Second Quantization-based Methods in Quantum Chemistry , 1981 .

[12]  Hans-Joachim Werner,et al.  A quadratically convergent multiconfiguration–self‐consistent field method with simultaneous optimization of orbitals and CI coefficients , 1980 .

[13]  Poul Jo,et al.  Optimization of orbitals for multiconfigurational reference states , 1978 .

[14]  J. Olsen,et al.  Newton-Raphson approaches and generalizations in multiconfigurational self-consistent field calculations , 1982 .

[15]  V. R. Saunders,et al.  A “Level–Shifting” method for converging closed shell Hartree–Fock wave functions , 1973 .