A Decomposition Method for Nonlinear Parameter Estimation in TRANSCEND

Fault isolation and identification are necessary components for system reconfiguration and fault adaptive control in complex systems. However, accurate and timely on-line fault identification in nonlinear systems can be difficult and computationally expensive. In this paper, we improve the quantitative fault identification scheme in the TRANSCEND diagnosis approach. First, we propose to use possible conflicts (PCs) to find the set of minimally redundant subsystems that can be used for parameter estimation. Second, we introduce new algorithms for computing PCs from the temporal causal graph model used in TRANSCEND. Third, we use the minimal estimators to decompose the system model into smaller, independent subsystems for the parameter estimation task. We demonstrate the feasibility of this method by running experiments on a simulated model of the reverse osmosis subsystem of the advanced water recovery system developed at the NASA Johnson Space Center. Our results show a considerable reduction in parameter estimation time without loss of accuracy and robustness in the estimation.

[1]  Jan F. Broenink Introduction to Physical Systems Modelling with Bond Graphs , 2000 .

[2]  Pieter J. Mosterman,et al.  A Combined Qualitative/Quantitative Approach for Fault Isolation in Continuous Dynamic Systems , 2000 .

[3]  M. Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[4]  Gautam Biswas,et al.  Analytic Redundancy, Possible Conflicts, and TCG-based Fault Signature Diagnosis applied to Nonlinear Dynamic Systems , 2009 .

[5]  David Kortenkamp,et al.  Intelligent Control of a Water-Recovery System: Three Years in the Trenches , 2003, AI Mag..

[6]  P. Frank,et al.  Strong tracking filtering of nonlinear time-varying stochastic systems with coloured noise: application to parameter estimation and empirical robustness analysis , 1996 .

[7]  Gautam Biswas,et al.  Designing Distributed Diagnosers for Complex Continuous Systems , 2009, IEEE Transactions on Automation Science and Engineering.

[8]  O. Nelles Nonlinear System Identification , 2001 .

[9]  B. Pulido,et al.  Machine Learning and Model Based Diagnosis using Possible Conflicts and System Decomposition , 2008 .

[10]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[11]  Alan S. Perelson,et al.  System Dynamics: A Unified Approach , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Tohru Katayama,et al.  Subspace Methods for System Identification , 2005 .

[13]  Brian C. Williams,et al.  Decompositional, Model-based Learning and its Analogy to Diagnosis , 1998, AAAI/IAAI.

[14]  M. Viberg Subspace-based state-space system identification , 2002 .

[15]  Xenofon D. Koutsoukos,et al.  A Comprehensive Diagnosis Methodology for Complex Hybrid Systems: A Case Study on Spacecraft Power Distribution Systems , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[16]  Carlos Alonso González,et al.  Possible conflicts: a compilation technique for consistency-based diagnosis , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  J. Chambers Fitting nonlinear models: numerical techniques , 1973 .

[18]  Gabor Karsai,et al.  A robust method for hybrid diagnosis of complex systems , 2003 .

[19]  Roberto Kawakami Harrop Galvão,et al.  Wiener-System Subspace Identification for Mobile Wireless mm-Wave Networks , 2007, IEEE Transactions on Vehicular Technology.

[20]  Belkacem Ould Bouamama,et al.  Model-based Process Supervision: A Bond Graph Approach , 2008 .

[21]  Janos Gertler,et al.  All linear methods are equal—and extendible to (some) nonlinearities , 2002 .

[22]  Rolf Isermann,et al.  Fault-Diagnosis Systems , 2005 .

[23]  Pieter J. Mosterman,et al.  Diagnosis of continuous valued systems in transient operating regions , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[24]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[25]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[26]  A. D. Pouliezos,et al.  Real time fault monitoring of industrial processes , 1994 .

[27]  Giorgio Pariani,et al.  Results of an integrated water recovery system test , 2001 .

[28]  M. Nyberg,et al.  Minimal Structurally Overdetermined sets for residual generation: A comparison of alternative approaches , 2009 .

[29]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[30]  Paul M. Frank,et al.  Issues of Fault Diagnosis for Dynamic Systems , 2010, Springer London.

[31]  Teresa Escobet,et al.  Parameter estimation methods for fault detection and isolation LAAS-CNRS UPC , 2001 .

[32]  Michel Verhaegen,et al.  Recursive subspace identification of linear and non-linear Wiener state-space models , 2000, Autom..

[33]  Aníbal Bregón Bregón Integration of fdi and dx techniques within consistency-based diagnosis with possible conflicts , 2010 .

[34]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[35]  Michel Kinnaert,et al.  Diagnosis and Fault-Tolerant Control , 2006 .