Are the Sublimation Thermodynamics of Organic Molecules Predictable?

We compare a range of computational methods for the prediction of sublimation thermodynamics (enthalpy, entropy, and free energy of sublimation). These include a model from theoretical chemistry that utilizes crystal lattice energy minimization (with the DMACRYS program) and quantitative structure property relationship (QSPR) models generated by both machine learning (random forest and support vector machines) and regression (partial least squares) methods. Using these methods we investigate the predictability of the enthalpy, entropy and free energy of sublimation, with consideration of whether such a method may be able to improve solubility prediction schemes. Previous work has suggested that the major source of error in solubility prediction schemes involving a thermodynamic cycle via the solid state is in the modeling of the free energy change away from the solid state. Yet contrary to this conclusion other work has found that the inclusion of terms such as the enthalpy of sublimation in QSPR methods does not improve the predictions of solubility. We suggest the use of theoretical chemistry terms, detailed explicitly in the Methods section, as descriptors for the prediction of the enthalpy and free energy of sublimation. A data set of 158 molecules with experimental sublimation thermodynamics values and some CSD refcodes has been collected from the literature and is provided with their original source references.

[1]  Lemont B. Kier,et al.  An Electrotopological-State Index for Atoms in Molecules , 1990, Pharmaceutical Research.

[2]  A. Avdeef Suggested Improvements for Measurement of Equilibrium Solubility-pH of Ionizable Drugs , 2015 .

[3]  John B. O. Mitchell,et al.  Predicting intrinsic aqueous solubility by a thermodynamic cycle. , 2008, Molecular pharmaceutics.

[4]  J. Gomes,et al.  Thermochemistry of nitronaphthalenes and nitroanthracenes , 2006 .

[5]  John B. O. Mitchell,et al.  Enzyme informatics. , 2012, Current topics in medicinal chemistry.

[6]  M. R. D. Silva,et al.  Thermodynamic study of the sublimation of six halobenzoic acids , 2005 .

[7]  A. Bauer-Brandl,et al.  Thermodynamic and Structural Aspects of Some Fenamate Molecular Crystals , 2009 .

[8]  O. Surov,et al.  Thermodynamic and structural aspects of sulfonamide crystals and solutions. , 2009, Journal of pharmaceutical sciences.

[9]  A. Bauer-Brandl,et al.  Energetic aspects of diclofenac acid in crystal modifications and in solutions--mechanism of solvation, partitioning and distribution. , 2007, Journal of pharmaceutical sciences.

[10]  A. Bauer-Brandl,et al.  Towards an understanding of the molecular mechanism of solvation of drug molecules: a thermodynamic approach by crystal lattice energy, sublimation, and solubility exemplified by paracetamol, acetanilide, and phenacetin. , 2006, Journal of pharmaceutical sciences.

[11]  Edward O. Pyzer-Knapp,et al.  Predicted crystal energy landscapes of porous organic cages , 2014 .

[12]  Luís M. N. B. F. Santos,et al.  The design, construction, and testing of a new Knudsen effusion apparatus , 2006 .

[13]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[14]  Neera Jain,et al.  Prediction of Aqueous Solubility of Organic Compounds by the General Solubility Equation (GSE) , 2001, J. Chem. Inf. Comput. Sci..

[15]  J. Dearden,et al.  In silico Prediction of Aqueous Solubility: a Comparative Study of Local and Global Predictive Models , 2015, Molecular informatics.

[16]  Maik Moeller,et al.  An Introduction To Chemoinformatics , 2016 .

[17]  Pierre Baldi,et al.  Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules , 2013, J. Chem. Inf. Model..

[18]  D. Hillesheim,et al.  Thermodynamic study on the sublimation of the three iodobenzoic acids and of 2-fluoro- and 3-fluorobenzoic acids , 2000 .

[19]  A. Bauer-Brandl,et al.  Extent and mechanism of solvation and partitioning of isomers of substituted benzoic acids: a thermodynamic study in the solid state and in solution. , 2008, Journal of pharmaceutical sciences.

[20]  David A. Winkler,et al.  Capturing the Crystal: Prediction of Enthalpy of Sublimation, Crystal Lattice Energy, and Melting Points of Organic Compounds , 2013, J. Chem. Inf. Model..

[21]  Maxim V Fedorov,et al.  Combination of RISM and Cheminformatics for Efficient Predictions of Hydration Free Energy of Polyfragment Molecules: Application to a Set of Organic Pollutants. , 2011, Journal of chemical theory and computation.

[22]  M. Keshavarz,et al.  Prediction of heats of sublimation of energetic compounds using their molecular structures , 2015, Journal of Thermal Analysis and Calorimetry.

[23]  A. Hagler,et al.  Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Donald E. Williams Nonbonded Potential Parameters Derived from Crystalline Aromatic Hydrocarbons , 1966 .

[25]  Luís M. N. B. F. Santos,et al.  Thermodynamic study of 1,2,3-triphenylbenzene and 1,3,5-triphenylbenzene , 2010 .

[26]  V. Tkachev,et al.  Sulfonamide Molecular Crystals: Thermodynamic and Structural Aspects , 2011 .

[27]  Andreas Bender,et al.  Melting Point Prediction Employing k-Nearest Neighbor Algorithms and Genetic Parameter Optimization , 2006, J. Chem. Inf. Model..

[28]  Oleg A. Raevsky,et al.  Sublimation of Molecular Crystals: Prediction of Sublimation Functions on the Basis of HYBOT Physicochemical Descriptors and Structural Clusterization , 2010 .

[29]  M. R. D. Silva,et al.  Experimental thermochemical study of 2,5- and 2,6-dichloro-4-nitroanilines , 2009 .

[30]  John B. O. Mitchell,et al.  A review of methods for the calculation of solution free energies and the modelling of systems in solution. , 2015, Physical chemistry chemical physics : PCCP.

[31]  A. Bauer-Brandl,et al.  Thermodynamics of solutions IV: Solvation of ketoprofen in comparison with other NSAIDs. , 2003, Journal of pharmaceutical sciences.

[32]  Florian Nigsch,et al.  Why Are Some Properties More Difficult To Predict than Others? A Study of QSPR Models of Solubility, Melting Point, and Log P , 2008, J. Chem. Inf. Model..

[33]  Paul Tavan,et al.  A fast multipole method combined with a reaction field for long-range electrostatics in molecular dynamics simulations: The effects of truncation on the properties of water , 2003 .

[34]  A. Bauer-Brandl,et al.  Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[35]  Liming Wang The gas-phase thermochemistry of SeFn, SeFn+, and SeFn− (n = 1–6) from Gaussian-3 calculations , 2007 .

[36]  Tanja Van Mourik,et al.  Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules , 2014, J. Chem. Inf. Model..

[37]  B. Brunetti,et al.  Vapor Pressures and Standard Molar Sublimation Enthalpies of Three 6-Methylthio-2,4-di(alkylamino)-1,3,5-triazine Derivatives: Simetryn, Ametryn, and Terbutryn , 2007 .

[38]  Sarah L Price,et al.  Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. , 2010, Physical chemistry chemical physics : PCCP.

[39]  J. Dávalos,et al.  Enthalpies of formation of methyl benzenecarboxylates , 1998 .

[40]  Luís M. N. B. F. Santos,et al.  New Static Apparatus and Vapor Pressure of Reference Materials: Naphthalene, Benzoic Acid, Benzophenone, and Ferrocene , 2006 .

[41]  M. R. D. Silva,et al.  Standard molar enthalpies of formation and of sublimation of 2-thiophenecarboxamide and 2-thiopheneacetamide , 2008 .

[42]  A. Bauer-Brandl,et al.  Influence of Position and Size of Substituents on the Mechanism of Partitioning: A Thermodynamic Study on Acetaminophens, Hydroxybenzoic Acids, and Parabens , 2008, AAPS PharmSciTech.

[43]  A. Bauer-Brandl,et al.  Thermodynamics of sublimation, crystal lattice energies, and crystal structures of racemates and enantiomers: (+)- and (+/-)-ibuprofen. , 2004, Journal of pharmaceutical sciences.

[44]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..

[45]  J. Gomes,et al.  Combined experimental and computational thermochemistry of isomers of chloronitroanilines , 2008 .

[46]  John B. O. Mitchell,et al.  First-Principles Calculation of the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules. , 2012, Journal of chemical theory and computation.

[47]  R. Docherty,et al.  Low solubility in drug development: de‐convoluting the relative importance of solvation and crystal packing , 2015, The Journal of pharmacy and pharmacology.

[48]  Abu T M Serajuddin,et al.  Trends in solubility of polymorphs. , 2005, Journal of pharmaceutical sciences.

[49]  Paul L. A. Popelier,et al.  QCTFF: on the construction of a novel protein force field , 2015 .

[50]  John B. O. Mitchell,et al.  Can we predict lattice energy from molecular structure? , 2003, Acta Crystallographica Section B Structural Science.

[51]  P. Selzer,et al.  Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. , 2000, Journal of medicinal chemistry.

[52]  Tu C Le,et al.  Aqueous solubility prediction: do crystal lattice interactions help? , 2013, Molecular pharmaceutics.

[53]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[54]  A. Bauer-Brandl,et al.  Towards an understanding of the molecular mechanism of solvation of drug molecules: a thermodynamic approach by crystal lattice energy, sublimation, and solubility exemplified by hydroxybenzoic acids. , 2006, Journal of pharmaceutical sciences.

[55]  John B. O. Mitchell Machine learning methods in chemoinformatics , 2014, Wiley interdisciplinary reviews. Computational molecular science.

[56]  Y. Abramov Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions? , 2015, Molecular pharmaceutics.

[57]  AiharaAriyuki Estimation of the Energy of Hydrogen Bonds Formed in Crystals. I. Sublimation Pressures of Some Organic Molecular Crystals and the Additivity of Lattice Energy , 1959 .

[58]  D. Hillesheim,et al.  Thermodynamic Study on the Sublimation of 2-Phenylacetic, 4-Phenylbutyric, and 5-Phenylvaleric Acid , 2001 .

[59]  S. Vecchio,et al.  Vapor pressures and standard molar enthalpies, entropies, and Gibbs free energies of sublimation of 2,4- and 3,4-dinitrobenzoic acids , 2009 .

[60]  A. Kana'an,et al.  Enthalpy and entropy of sublimation of tetraphenyltin and hexaphenylditin. Bond dissociation energy of Sn-C and Sn-Sn , 1969 .

[61]  Luís M. N. B. F. Santos,et al.  Phenylnaphthalenes: sublimation equilibrium, conjugation, and aromatic interactions. , 2012, The journal of physical chemistry. B.

[62]  S. Vecchio,et al.  Standard Sublimation Enthalpies of Some Dichlorophenoxy Acids and Their Methyl Esters , 2005 .

[63]  J. Elguero,et al.  Structural studies of cyclic ureas: 1. Enthalpies of formation of imidazolidin-2-one and N,N′-trimethyleneurea , 2008 .

[64]  Yutaka Maruyama,et al.  A solvation‐free‐energy functional: A reference‐modified density functional formulation , 2015, J. Comput. Chem..

[65]  Thermodynamic study of the sublimation of eight 4-n-alkylbenzoic acids , 2004 .

[66]  Robert C. Glen,et al.  Random Forest Models To Predict Aqueous Solubility , 2007, J. Chem. Inf. Model..

[67]  S. Vecchio,et al.  Vapor pressures and standard molar enthalpies, entropies and Gibbs energies of sublimation of three 4-substituted acetanilide derivatives , 2009 .

[68]  K. Schaper,et al.  Studying thermodynamic aspects of sublimation, solubility and solvation processes and crystal structure analysis of some sulfonamides. , 2007, International journal of pharmaceutics.

[69]  John B O Mitchell,et al.  Greedy and Linear Ensembles of Machine Learning Methods Outperform Single Approaches for QSPR Regression Problems , 2015, Molecular informatics.

[70]  Anthony J Stone,et al.  Distributed Multipole Analysis:  Stability for Large Basis Sets. , 2005, Journal of chemical theory and computation.

[71]  Sabiruddin Mirza,et al.  Thermodynamic and Structural Aspects of Hydrated and Unhydrated Phases of 4-Hydroxybenzamide , 2007 .

[72]  K. Schaper,et al.  Sulfonamides as a subject to study molecular interactions in crystals and solutions: sublimation, solubility, solvation, distribution and crystal structure. , 2008, International journal of pharmaceutics.

[73]  H. Meekes,et al.  q-GRID: A New Method To Calculate Lattice and Interaction Energies for Molecular Crystals from Electron Densities , 2016 .

[74]  Edward W. Lowe,et al.  Computational Methods in Drug Discovery , 2014, Pharmacological Reviews.

[75]  T. Volkova,et al.  The impact of structural modification of 1,2,4-thiadiazole derivatives on thermodynamics of solubility and hydration processes. , 2015, Physical chemistry chemical physics : PCCP.

[76]  Luís M. N. B. F. Santos,et al.  Phase transition thermodynamics of phenyl and biphenyl naphthalenes , 2008 .

[77]  M. R. D. Silva,et al.  The construction, testing and use of a new knudsen effusion apparatus , 1990 .

[78]  L. N. Petrova,et al.  Synthesis, pharmacology, crystal properties, and quantitative solvation studies from a drug transport perspective for three new 1,2,4-thiadiazoles. , 2010, Journal of pharmaceutical sciences.

[79]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[80]  M. J. Monte,et al.  Vapor Pressures and Phase Changes Enthalpy and Gibbs Energy of Three Crystalline Monomethyl Benzenedicarboxylates , 2005 .

[81]  D. Harrop,et al.  Thermodynamic properties of fluorine compounds 9. Enthalpies of formation of some compounds containing the pentafluorophenyl group , 1969 .

[82]  Luís M. N. B. F. Santos,et al.  Standard molar enthalpies of formation and of sublimation of the terphenyl isomers , 2008 .

[83]  Jignasa K. Savjani,et al.  Drug Solubility: Importance and Enhancement Techniques , 2012, ISRN pharmaceutics.

[84]  J. McDonagh Computing the aqueous solubility of organic drug-like molecules and understanding hydrophobicity , 2015 .

[85]  Maxim V Fedorov,et al.  Towards a universal method for calculating hydration free energies: a 3D reference interaction site model with partial molar volume correction , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[86]  C. G. D. Kruif,et al.  Enthalpies of sublimation and vapour pressures of 14 amino acids and peptides , 1979 .

[87]  Luís M. N. B. F. Santos,et al.  Vapour pressures, enthalpies and entropies of sublimation of para substituted benzoic acids , 2010 .

[88]  A. Bauer-Brandl,et al.  Thermodynamic study of sublimation, solubility, solvation, and distribution processes of atenolol and pindolol. , 2007, Molecular pharmaceutics.

[89]  Sergey V. Kurkov,et al.  Thermodynamic studies of Fenbufen, Diflunisal, and Flurbiprofen: sublimation, solution and solvation of biphenyl substituted drugs. , 2008, International journal of pharmaceutics.

[90]  M. R. D. Silva,et al.  Thermodynamic study on the sublimation of succinic acid and of methyl- and dimethyl-substituted succinic and glutaric acids , 2001 .

[91]  D. Hillesheim,et al.  Thermodynamic study on the sublimation of 3-phenylpropionic acid and of three methoxy-substituted 3-phenylpropionic acids , 2001 .

[92]  Li Di,et al.  Drug-like property concepts in pharmaceutical design. , 2009, Current pharmaceutical design.

[93]  J. Gomes,et al.  Thermochemistry of some alkylsubstituted anthracenes , 2006 .

[94]  C. Wood,et al.  Vapour pressure measurements on some organic high explosives , 1978 .

[95]  M. Colomina,et al.  Thermochemical properties of benzoic acid derivatives VIII. Enthalpies of combustion and formation of o-, m-, and p- t-butylbenzoic acids , 1978 .

[96]  John B. O. Mitchell,et al.  Predicting Melting Points of Organic Molecules: Applications to Aqueous Solubility Prediction Using the General Solubility Equation , 2015, Molecular informatics.

[97]  J. Delaney Predicting aqueous solubility from structure. , 2005, Drug discovery today.

[98]  G. Day,et al.  Atomistic calculations of phonon frequencies and thermodynamic quantities for crystals of rigid organic molecules , 2003 .

[99]  S. Vecchio Vapor pressures and standard molar enthalpies, entropies and Gibbs energies of sublimation of two hexachloro herbicides using a TG unit , 2010 .

[100]  Ulf Norinder,et al.  Molecular Descriptors Influencing Melting Point and Their Role in Classification of Solid Drugs. , 2003 .

[101]  A. Bauer-Brandl,et al.  Thermodynamic properties of flufenamic and niflumic acids--specific and non-specific interactions in solution and in crystal lattices, mechanism of solvation, partitioning and distribution. , 2007, Journal of pharmaceutical and biomedical analysis.

[102]  D Weininger,et al.  SMILES: a line notation and computerized interpreter for chemical structures. , 1987 .

[103]  John B. O. Mitchell,et al.  Is experimental data quality the limiting factor in predicting the aqueous solubility of druglike molecules? , 2014, Molecular pharmaceutics.

[104]  D. Williams,et al.  Transferability of nonbonded Cl⋯Cl potential energy function to crystalline chlorine , 1985 .