ON A TWO-SIDEDLY DEGENERATE CHEMOTAXIS MODEL WITH VOLUME-FILLING EFFECT

We consider a fully parabolic model for chemotaxis with volume-filling effect and a nonlinear diffusion that degenerates in a two-sided fashion. We address the questions of existence of weak solutions and of their regularity by using, respectively, a regularization method and the technique of intrinsic scaling.

[1]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[2]  Kenneth H. Karlsen,et al.  Renormalized Entropy Solutions for Quasi-linear Anisotropic Degenerate Parabolic Equations , 2004, SIAM J. Math. Anal..

[3]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[4]  E. DiBenedetto Degenerate Parabolic Equations , 1993 .

[5]  Vincenzo Vespri,et al.  Current issues on singular and degenerate evolution equations , 2002 .

[6]  N. Risebro,et al.  On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients , 2003 .

[7]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[8]  James P. Keener,et al.  Mathematical physiology , 1998 .

[9]  On the Doubly Singular Equation γ(u)t = Δpu , 2005 .

[10]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[11]  H. Alt,et al.  Nonsteady flow of water and oil through inhomogeneous porous media , 1985 .

[12]  Atsushi Yagi,et al.  NORM BEHAVIOR OF SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS , 1997 .

[13]  Philippe Laurençot,et al.  A Chemotaxis Model with Threshold Density and Degenerate Diffusion , 2005 .

[14]  J. M. Urbano,et al.  Intrinsic scaling for pde's with an exponential nonlinearity , 2006 .

[15]  Thomas Hillen,et al.  Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding , 2001, Adv. Appl. Math..

[16]  Hyung Ju Hwang,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization , 2022 .

[17]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[18]  José Carrillo Menéndez Entropy solutions for nonlinear degenerate problems , 1999 .

[19]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[20]  R. Landes On the existence of weak solutions for quasilinear parabolic initial-boundary value problems , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[21]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[22]  C. Schmeiser,et al.  MODEL HIERARCHIES FOR CELL AGGREGATION BY CHEMOTAXIS , 2006 .

[23]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.

[24]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[25]  Tohru Tsujikawa,et al.  Exponential attractor for a chemotaxis-growth system of equations , 2002 .

[26]  S. N. Kruzhkov,et al.  Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications , 1969 .

[27]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[28]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[29]  Martin Burger,et al.  The Keller-Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion , 2006, SIAM J. Math. Anal..