ON A TWO-SIDEDLY DEGENERATE CHEMOTAXIS MODEL WITH VOLUME-FILLING EFFECT
暂无分享,去创建一个
Mostafa Bendahmane | José Miguel Urbano | Kenneth H. Karlsen | K. Karlsen | J. M. Urbano | M. Bendahmane
[1] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[2] Kenneth H. Karlsen,et al. Renormalized Entropy Solutions for Quasi-linear Anisotropic Degenerate Parabolic Equations , 2004, SIAM J. Math. Anal..
[3] O. A. Ladyzhenskai︠a︡,et al. Linear and Quasi-linear Equations of Parabolic Type , 1995 .
[4] E. DiBenedetto. Degenerate Parabolic Equations , 1993 .
[5] Vincenzo Vespri,et al. Current issues on singular and degenerate evolution equations , 2002 .
[6] N. Risebro,et al. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients , 2003 .
[7] L. Segel,et al. Model for chemotaxis. , 1971, Journal of theoretical biology.
[8] James P. Keener,et al. Mathematical physiology , 1998 .
[9] On the Doubly Singular Equation γ(u)t = Δpu , 2005 .
[10] Herbert Amann,et al. Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .
[11] H. Alt,et al. Nonsteady flow of water and oil through inhomogeneous porous media , 1985 .
[12] Atsushi Yagi,et al. NORM BEHAVIOR OF SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS , 1997 .
[13] Philippe Laurençot,et al. A Chemotaxis Model with Threshold Density and Degenerate Diffusion , 2005 .
[14] J. M. Urbano,et al. Intrinsic scaling for pde's with an exponential nonlinearity , 2006 .
[15] Thomas Hillen,et al. Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding , 2001, Adv. Appl. Math..
[16] Hyung Ju Hwang,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization , 2022 .
[17] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[18] José Carrillo Menéndez. Entropy solutions for nonlinear degenerate problems , 1999 .
[19] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[20] R. Landes. On the existence of weak solutions for quasilinear parabolic initial-boundary value problems , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[21] W. Jäger,et al. On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .
[22] C. Schmeiser,et al. MODEL HIERARCHIES FOR CELL AGGREGATION BY CHEMOTAXIS , 2006 .
[23] M. A. Herrero,et al. Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.
[24] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[25] Tohru Tsujikawa,et al. Exponential attractor for a chemotaxis-growth system of equations , 2002 .
[26] S. N. Kruzhkov,et al. Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications , 1969 .
[27] L. Segel,et al. Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.
[28] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[29] Martin Burger,et al. The Keller-Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion , 2006, SIAM J. Math. Anal..