A survey on models for panel count data with applications to insurance

In insurance the expected number of claims per year given the observed characteristics of the covered risk is the basis for setting the price of a policy. Companies accumulate information of clients along several years, but in practice the panel data structure is not exploited. We review panel count data models that are useful in this context and present a new alternative based on the generalization of a compound sum.ResumenEn seguros, el número esperado de reclamaciones por año dadas las características del riesgo cubierto es la base para establecer el precio de una póliza. Las compañías de seguros acumulan informaci ón de clientes a lo largo de varias anualidades, pero en la práctica la estructura de panel de los datos no se explota. Revisamos los modelos para paneles de datos de enumeración que son útiles en este contexto y presentamos una nueva alternativa basada en la generalización de una suma compuesta.

[1]  Michel Denuit,et al.  Number of Accidents or Number of Claims? An Approach with Zero-Inflated Poisson Models for Panel Data , 2009 .

[2]  John Hinde,et al.  Compound Poisson Regression Models , 1982 .

[3]  R. Winkelmann Econometric Analysis of Count Data , 1997 .

[4]  Pravin K. Trivedi,et al.  Regression Analysis of Count Data: Measurement Errors , 1998 .

[5]  Montserrat Guillén,et al.  A Semi-Nonparametric Approach to Model Panel Count Data , 2011 .

[6]  Montserrat Guillén,et al.  Allowance for the Age of Claims in Bonus-Malus Systems* , 2001, ASTIN Bulletin.

[7]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[8]  Michel Denuit,et al.  Risk Classification for Claim Counts , 2007 .

[9]  J. G. Cragg Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods , 1971 .

[10]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[11]  Michel Denuit,et al.  Linear credibility models based on time series for claim counts , 2004 .

[12]  J. Mullahy Specification and testing of some modified count data models , 1986 .

[13]  G. Molenberghs,et al.  Models for Discrete Longitudinal Data , 2005 .

[14]  D. Rivers,et al.  Model Selection Tests for Nonlinear Dynamic Models , 2002 .

[15]  R. Golden Discrepancy Risk Model Selection Test theory for comparing possibly misspecified or nonnested models , 2003 .

[16]  Jean-Philippe Boucher,et al.  Models for insurance claim count with time dependence based on generalisations of Poisson and Negative Binomial distributions , 2008 .

[17]  Eric T. Bradlow,et al.  Count Models Based on Weibull Interarrival Times , 2008, 1307.5759.

[18]  Rainer Winkelmann,et al.  Duration Dependence and Dispersion in Count-Data Models , 1995 .

[19]  Michel Denuit,et al.  Fixed versus Random Effects in Poisson Regression Models for Claim Counts: A Case Study with Motor Insurance , 2006, ASTIN Bulletin.

[20]  H. Friedl Econometric Analysis of Count Data , 2002 .

[21]  Barry C. Arnold,et al.  Advances in Mathematical and Statistical Modeling , 2008 .

[22]  Michel Denuit,et al.  Models of Insurance Claim Counts with Time Dependence Based on Generalization of Poisson and Negative Binomial Distributions , 2008 .

[23]  Ingram Olkin,et al.  Multivariate distributions generated from mixtures of convolution and product families , 1990 .

[24]  Emiliano A. Valdez,et al.  Hierarchical Insurance Claims Modeling , 2008 .

[25]  Z. Griliches,et al.  Econometric Models for Count Data with an Application to the Patents-R&D Relationship , 1984 .

[26]  V. Young,et al.  Credibility in Favor of Unlucky Insureds , 2000 .

[27]  O. Vorobyev,et al.  Discrete multivariate distributions , 2008, 0811.0406.

[28]  Cheng Hsiao,et al.  Analysis of Panel Data , 1987 .

[29]  J. T. Wulu,et al.  Regression analysis of count data , 2002 .

[30]  P. Holgate Estimation for the bivariate Poisson distribution , 1964 .

[31]  J. S. Silva,et al.  Two-part multiple spell models for health care demand , 2001 .

[32]  Y. Mundlak On the Pooling of Time Series and Cross Section Data , 1978 .

[33]  Michel Denuit,et al.  Duration dependence models for claim counts , 2007 .

[34]  Yu Luo,et al.  Case Studies Using Panel Data Models , 2001 .

[35]  Pravin K. Trivedi,et al.  Regression Analysis of Count Data , 1998 .

[36]  Michel Denuit,et al.  Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems , 2007 .

[37]  Gordon E. Willmot,et al.  The Poisson-Inverse Gaussian distribution as an alternative to the negative binomial , 1987 .

[38]  C. Hsiao Analysis of Panel Data: Truncated and Censored Data , 2003 .

[39]  Michel Denuit,et al.  Modelling of Insurance Claim Count with Hurdle Distribution for Panel Data , 2008 .

[40]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[41]  Hilippe,et al.  RISK CLASSIFICATION FOR CLAIM COUNTS : A COMPARATIVE ANALYSIS OF VARIOUS ZERO-INFLATED MIXED POISSON AND HURDLE MODELS , 2006 .

[42]  Univariate and multivariate versions of the negative binomial-inverse Gaussian distributions with applications , 2008 .

[43]  G. Grunwald,et al.  Analysis of Longitudinal Count Data with Serial Correlation , 2007, Biometrical journal. Biometrische Zeitschrift.

[44]  Michel Denuit,et al.  Actuarial Modelling of Claim Counts , 2007 .

[45]  John M. Lachin Analysis of Count Data , 2008 .

[46]  J. Mullahy Instrumental-Variable Estimation of Count Data Models: Applications to Models of Cigarette Smoking Behavior , 1997, Review of Economics and Statistics.

[47]  Z. Griliches,et al.  Econometric Models for Count Data with an Application to the Patents-R&D Relationship , 1984 .