Preconditioning Toeplitz-plus-diagonal linear systems using the Sherman-Morrison-Woodbury formula

In order to solve the Toeplitz-plus-diagonal linear systems arising from image restorations efficiently, we propose a sparse approximate inverse preconditioner based on the Sherman-Morrison-Woodbury formula. The preconditioner can be constructed through an incomplete factorization combined with some dropping strategies. When the preconditioner is applied to the conjugate gradient method for solving the Toeplitz-plus-diagonal linear systems, numerical results show that our preconditioning method is more effective than other existing ones.

[1]  K. Jbilou,et al.  Sylvester Tikhonov-regularization methods in image restoration , 2007 .

[2]  Raymond H. Chan,et al.  Fast Iterative Solvers for Toeplitz-Plus-Band Systems , 1993, SIAM J. Sci. Comput..

[3]  Yongzhong Song,et al.  Image restoration with a high-order total variation minimization method☆ , 2013 .

[4]  Fu-Rong Lin,et al.  BTTB preconditioners for BTTB least squares problems , 2011 .

[5]  Abderrahman Bouhamidi,et al.  Conditional gradient Tikhonov method for a convex optimization problem in image restoration , 2014, J. Comput. Appl. Math..

[6]  Jianyu Pan,et al.  Approximate Inverse Circulant-plus-Diagonal Preconditioners for Toeplitz-plus-Diagonal Matrices , 2010, SIAM J. Sci. Comput..

[7]  Hongyi Li,et al.  An explicit formula for the inverse of a pentadiagonal Toeplitz matrix , 2015, J. Comput. Appl. Math..

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  Juana Cerdán,et al.  Preconditioning Sparse Nonsymmetric Linear Systems with the Sherman-Morrison Formula , 2003, SIAM J. Sci. Comput..

[10]  M. Ng Iterative Methods for Toeplitz Systems , 2004 .

[11]  Lothar Reichel,et al.  Tikhonov regularization based on generalized Krylov subspace methods , 2012 .

[12]  Michael K. Ng Iterative Methods for Toeplitz Systems (Numerical Mathematics and Scientific Computation) , 2004 .

[13]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.