Convergence of an implicit, constraint preserving finite element discretization of p-harmonic heat flow into spheres

We propose an implicit discretization of the p-harmonic map heat flow into the sphere S2 that enjoys a discrete energy inequality and converges under only a mild mesh constraint to a weak solution. A fully practical iterative scheme that approximates the solution of the nonlinear system of equations in each time step is proposed and analyzed. Computational studies to motivate possible finite-time blow-up behavior of solutions for p ≠ 2 are included.

[1]  Norbert Hungerbühler,et al.  Heat Flow into Spheres for a Class of Energies , 2004 .

[2]  Masashi Misawa Approximation of p-harmonic maps by the penalized equation , 2001 .

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[5]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[6]  Françoise Demengel,et al.  Heat flow for p -harmonic maps with values in the circle , 2000 .

[7]  Ali Fardoun,et al.  Heat flow for p-harmonic maps with small initial data , 2003 .

[8]  Michael Struwe,et al.  Geometric evolution problems , 1995 .

[9]  W. B. Liu,et al.  Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .

[10]  Yunmei Chen,et al.  The weak solutions to the evolution problems of harmonic maps , 1989 .

[11]  Rugang Ye,et al.  Finite-time blow-up of the heat flow of harmonic maps from surfaces , 1992 .

[12]  Norbert Hungerbühler Non-Uniqueness for the p-Harmonic Flow , 1997, Canadian Mathematical Bulletin.

[13]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[14]  V. Caselles,et al.  Parabolic Quasilinear Equations Min-imizing Linear Growth Functionals , 2004 .

[15]  Masashi Misawa,et al.  On the p-harmonic flow into spheres in the singular case , 2002 .

[16]  Andreas Prohl,et al.  On Fully Implicit Space-Time Discretization for Motions of Incompressible Fluids with Shear-Dependent Viscosities: The Case p ≤ 2 , 2001, SIAM J. Numer. Anal..

[17]  Yoshikazu Giga,et al.  LOCAL SOLVABILITY OF A CONSTRAINED GRADIENT SYSTEM OF TOTAL VARIATION , 2003 .

[18]  John W. Barrett,et al.  A Convergent and Constraint-Preserving Finite Element Method for the p-Harmonic Flow into Spheres , 2007, SIAM J. Numer. Anal..

[19]  François Alouges,et al.  CONVERGENCE OF A FINITE ELEMENT DISCRETIZATION FOR THE LANDAU¿LIFSHITZ EQUATIONS IN MICROMAGNETISM , 2006 .

[20]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[21]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[22]  Andreas Prohl,et al.  Constraint preserving implicit finite element discretization of harmonic map flow into spheres , 2007, Math. Comput..

[23]  F. Béthuel,et al.  Density of Smooth Functions between Two Manifolds in Sobolev Spaces , 1988 .

[24]  Michael Struwe,et al.  Existence and partial regularity results for the heat flow for harmonic maps , 1989 .

[25]  François Alouges,et al.  On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness , 1992 .

[26]  Ali Fardoun,et al.  On weakly p-harmonic maps to a closed hemisphere , 2005 .

[27]  Norbert Hungerbühler,et al.  Heat flow ofp-harmonic maps with values into spheres , 1994 .

[28]  Norbert Hungerbuhler,et al.  Global weak solutions of the p-harmonic flow into homogeneous spaces , 1996 .

[29]  Andreas Prohl,et al.  Convergence of an Implicit Finite Element Method for the Landau-Lifshitz-Gilbert Equation , 2006, SIAM J. Numer. Anal..