Heterogeneities in Axonal Structure and Transporter Distribution Lower Dopamine Reuptake Efficiency

Abstract Efficient clearance of dopamine (DA) from the synapse is key to regulating dopaminergic signaling. This role is fulfilled by DA transporters (DATs). Recent advances in the structural characterization of DAT from Drosophila (dDAT) and in high-resolution imaging of DA neurons and the distribution of DATs in living cells now permit us to gain a mechanistic understanding of DA reuptake events in silico. Using electron microscopy images and immunofluorescence of transgenic knock-in mouse brains that express hemagglutinin-tagged DAT in DA neurons, we reconstructed a realistic environment for MCell simulations of DA reuptake, wherein the identity, population and kinetics of homology-modeled human DAT (hDAT) substates were derived from molecular simulations. The complex morphology of axon terminals near active zones was observed to give rise to large variations in DA reuptake efficiency, and thereby in extracellular DA density. Comparison of the effect of different firing patterns showed that phasic firing would increase the probability of reaching local DA levels sufficiently high to activate low-affinity DA receptors, mainly owing to high DA levels transiently attained during the burst phase. The experimentally observed nonuniform surface distribution of DATs emerged as a major modulator of DA signaling: reuptake was slower, and the peaks/width of transient DA levels were sharper/wider under nonuniform distribution of DATs, compared with uniform. Overall, the study highlights the importance of accurate descriptions of extrasynaptic morphology, DAT distribution, and conformational kinetics for quantitative evaluation of dopaminergic transmission and for providing deeper understanding of the mechanisms that regulate DA transmission.

[1]  M. H. Cheng,et al.  Quantitative Assessment of the Energetics of Dopamine Translocation by Human Dopamine Transporter. , 2017, The journal of physical chemistry. B.

[2]  M. H. Cheng,et al.  Targeting of dopamine transporter to filopodia requires an outward-facing conformation of the transporter , 2017, Scientific Reports.

[3]  Asghar M. Razavi,et al.  Markov State-Based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter , 2017 .

[4]  M. H. Cheng,et al.  Effect of Dimerization on the Dynamics of Neurotransmitter:Sodium Symporters , 2017, The journal of physical chemistry. B.

[5]  H. Sitte,et al.  Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism* , 2017, The Journal of Biological Chemistry.

[6]  George Khelashvili,et al.  A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter , 2017, Scientific Reports.

[7]  Pascal Fua,et al.  Reconstructing Curvilinear Networks Using Path Classifiers and Integer Programming , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  S. Cragg,et al.  Striatal dopamine neurotransmission: regulation of release and uptake. , 2016, Basal ganglia.

[9]  E. Gouaux,et al.  X-ray structures and mechanism of the human serotonin transporter , 2016, Nature.

[10]  A. Newman,et al.  Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane , 2016, Nature Communications.

[11]  K. Fogarty,et al.  Ack1 is a dopamine transporter endocytic brake that rescues a trafficking-dysregulated ADHD coding variant , 2015, Proceedings of the National Academy of Sciences.

[12]  T. Sejnowski,et al.  Nanoconnectomic upper bound on the variability of synaptic plasticity , 2015, eLife.

[13]  S. Amara,et al.  Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine , 2015, Proceedings of the National Academy of Sciences.

[14]  M. H. Cheng,et al.  Molecular Mechanism of Dopamine Transport by Human Dopamine Transporter. , 2015, Structure.

[15]  L. Wallace,et al.  Computational modeling of extracellular dopamine kinetics suggests low probability of neurotransmitter release , 2015, Synapse.

[16]  T. Sejnowski,et al.  Computational reconstitution of spine calcium transients from individual proteins , 2015, Front. Synaptic Neurosci..

[17]  Simon C Watkins,et al.  Brain Region-Specific Trafficking of the Dopamine Transporter , 2015, The Journal of Neuroscience.

[18]  M. H. Cheng,et al.  Structure-Encoded Global Motions and Their Role in Mediating Protein-Substrate Interactions. , 2015, Biophysical journal.

[19]  A. Sorkin,et al.  Dopamine transporter is enriched in filopodia and induces filopodia formation , 2015, Molecular and Cellular Neuroscience.

[20]  Gianni De Fabritiis,et al.  Spontaneous Inward Opening of the Dopamine Transporter Is Triggered by PIP2-Regulated Dynamics of the N-Terminus , 2015, ACS chemical neuroscience.

[21]  E. Levitan,et al.  Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles , 2015, Proceedings of the National Academy of Sciences.

[22]  M. H. Cheng,et al.  Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding , 2015, Front. Neurol..

[23]  Eric Gouaux,et al.  X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine , 2015, Nature Structural &Molecular Biology.

[24]  E. Gouaux,et al.  Neurotransmitter and psychostimulant recognition by the dopamine transporter , 2015, Nature.

[25]  David Erritzoe,et al.  The dopamine theory of addiction: 40 years of highs and lows , 2015, Nature Reviews Neuroscience.

[26]  Ranu Jung,et al.  Encyclopedia of Computational Neuroscience , 2015, Springer New York.

[27]  C. P. Ford The role of D2-autoreceptors in regulating dopamine neuron activity and transmission , 2014, Neuroscience.

[28]  T. Robbins,et al.  Functional implications of dopamine D1 vs. D2 receptors: A ‘prepare and select’ model of the striatal direct vs. indirect pathways , 2014, Neuroscience.

[29]  Pascal Fua,et al.  NeuroMorph: A Toolset for the Morphometric Analysis and Visualization of 3D Models Derived from Electron Microscopy Image Stacks , 2014, Neuroinformatics.

[30]  Q. Q. Hoang Pathway for Parkinson disease , 2014, Proceedings of the National Academy of Sciences.

[31]  Eric Gouaux,et al.  X-ray structure of dopamine transporter elucidates antidepressant mechanism , 2013, Nature.

[32]  A. Sorkin,et al.  Mice expressing markedly reduced striatal dopamine transporters exhibit increased locomotor activity, dopamine uptake turnover rate, and cocaine responsiveness , 2013, Synapse.

[33]  J. Foster,et al.  Mechanisms of dopamine transporter regulation in normal and disease states. , 2013, Trends in pharmacological sciences.

[34]  J Andrew McCammon,et al.  Activation and dynamic network of the M2 muscarinic receptor , 2013, Proceedings of the National Academy of Sciences.

[35]  J. Roeper Dissecting the diversity of midbrain dopamine neurons , 2013, Trends in Neurosciences.

[36]  Restricted diffusion of dopamine in the rat dorsal striatum. , 2013, ACS chemical neuroscience.

[37]  Gerhard F. Ecker,et al.  Mutational Analysis of the High-Affinity Zinc Binding Site Validates a Refined Human Dopamine Transporter Homology Model , 2013, PLoS Comput. Biol..

[38]  Josef Spacek,et al.  Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil , 2013, The Journal of comparative neurology.

[39]  Jakob K. Dreyer,et al.  Mathematical model of dopamine autoreceptors and uptake inhibitors and their influence on tonic and phasic dopamine signaling. , 2013, Journal of neurophysiology.

[40]  Charles Nicholson,et al.  Brain Extracellular Space: Geometry, Matrix and Physiological Importance , 2013, Basic and clinical neuroscience.

[41]  R. Wightman,et al.  Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens , 2012, Journal of neurochemistry.

[42]  A. Sorkin,et al.  Epitope‐tagged dopamine transporter knock‐in mice reveal rapid endocytic trafficking and filopodia targeting of the transporter in dopaminergic axons , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[43]  S. Cragg,et al.  Dopamine release in the basal ganglia , 2011, Neuroscience.

[44]  Jacob D. Durrant,et al.  POVME: an algorithm for measuring binding-pocket volumes. , 2011, Journal of molecular graphics & modelling.

[45]  J. Cadet,et al.  Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration. , 2010, CNS & neurological disorders drug targets.

[46]  Rune W. Berg,et al.  Influence of Phasic and Tonic Dopamine Release on Receptor Activation , 2010, The Journal of Neuroscience.

[47]  Christophe Chipot,et al.  Good practices in free-energy calculations. , 2010, The journal of physical chemistry. B.

[48]  J. Mallol,et al.  Useful pharmacological parameters for G-protein-coupled receptor homodimers obtained from competition experiments. Agonist-antagonist binding modulation. , 2009, Biochemical pharmacology.

[49]  D. Sulzer,et al.  Fluorescent False Neurotransmitters Visualize Dopamine Release from Individual Presynaptic Terminals , 2009, Science.

[50]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[51]  A. Sorkin,et al.  Negative Regulation of Dopamine Transporter Endocytosis by Membrane-Proximal N-Terminal Residues , 2009, The Journal of Neuroscience.

[52]  Joel R Stiles,et al.  Rapid creation, Monte Carlo simulation, and visualization of realistic 3D cell models. , 2009, Methods in molecular biology.

[53]  M. Reith,et al.  Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. , 2008, CNS & neurological disorders drug targets.

[54]  Scott B. Baden,et al.  Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces , 2008, SIAM J. Sci. Comput..

[55]  C. Nicholson,et al.  Diffusion in brain extracellular space. , 2008, Physiological reviews.

[56]  S. Cragg,et al.  Dopamine spillover after quantal release: Rethinking dopamine transmission in the nigrostriatal pathway , 2008, Brain Research Reviews.

[57]  H. Weinstein,et al.  The binding sites for cocaine and dopamine in the dopamine transporter overlap , 2008, Nature Neuroscience.

[58]  Chang-Guo Zhan,et al.  How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. , 2007, Biophysical journal.

[59]  J. Mccammon,et al.  Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. , 2007, The Journal of chemical physics.

[60]  A. Grace,et al.  The Yin and Yang of dopamine release: a new perspective , 2007, Neuropharmacology.

[61]  P. Phillips,et al.  Presynaptic regulation of dendrodendritic dopamine transmission , 2007, The European journal of neuroscience.

[62]  G. Uhl,et al.  Dopamine uptake and cocaine binding mechanisms: the involvement of charged amino acids from the transmembrane domains of the human dopamine transporter. , 2006, European journal of pharmacology.

[63]  M. Vivó,et al.  Investigation of Cooperativity in the Binding of Ligands to the D2 Dopamine Receptor , 2006, Molecular Pharmacology.

[64]  Christophe Chipot,et al.  Exploring the free-energy landscape of a short peptide using an average force. , 2005, The Journal of chemical physics.

[65]  S. Cragg,et al.  DAncing past the DAT at a DA synapse , 2004, Trends in Neurosciences.

[66]  Davide Viggiano,et al.  Dysfunctions in Dopamine Systems and ADHD: Evidence From Animals and Modeling , 2004, Neural plasticity.

[67]  S. Amara,et al.  Dynamic regulation of the dopamine transporter. , 2003, European journal of pharmacology.

[68]  D. Segal,et al.  Altered extracellular dopamine concentration in the brains of cholecystokinin-A receptor deficient rats , 2003, Neuroscience Letters.

[69]  R. Wightman,et al.  Correlation of local changes in extracellular oxygen and pH that accompany dopaminergic terminal activity in the rat caudate–putamen , 2003, Journal of neurochemistry.

[70]  R. Gainetdinov,et al.  Plasma membrane monoamine transporters: structure, regulation and function , 2003, Nature Reviews Neuroscience.

[71]  Patrik Brundin,et al.  Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. , 2002, Nature reviews. Neuroscience.

[72]  S. Amara,et al.  The Dopamine Transporter in Mesencephalic Cultures Is Refractory to Physiological Changes in Membrane Voltage , 2001, The Journal of Neuroscience.

[73]  C. Nicholson,et al.  Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake. , 2001, Journal of neurophysiology.

[74]  Erik De Schutter,et al.  Monte Carlo Methods for Simulating Realistic Synaptic Microphysiology Using MCell , 2000 .

[75]  Erik De Schutter,et al.  Computational neuroscience : realistic modeling for experimentalists , 2000 .

[76]  S. Amara,et al.  Excitatory amino acid transporters: a family in flux. , 1999, Annual review of pharmacology and toxicology.

[77]  S. Amara,et al.  Neurotransmitter transporters as molecular targets for addictive drugs. , 1998, Drug and alcohol dependence.

[78]  E. Pothos,et al.  Presynaptic Recording of Quanta from Midbrain Dopamine Neurons and Modulation of the Quantal Size , 1998, The Journal of Neuroscience.

[79]  J. O. Schenk,et al.  A Multisubstrate Kinetic Mechanism of Dopamine Transport in the Nucleus Accumbens and Its Inhibition by Cocaine , 1997, Journal of neurochemistry.

[80]  T. Bartol,et al.  Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[81]  M. Kuhar,et al.  The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  M. Kavanaugh,et al.  Kinetics of a human glutamate transporter , 1995, Neuron.

[83]  P. Garris,et al.  Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  A. Levey,et al.  Localization of neuronal and glial glutamate transporters , 1994, Neuron.

[85]  G. Di Chiara,et al.  Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[86]  L. Descarries,et al.  Quantification of the dopamine innervation in adult rat neostriatum , 1986, Neuroscience.

[87]  R. Roth,et al.  Mesocortical dopamine neurons. Lack of autoreceptors modulating dopamine synthesis. , 1981, Molecular pharmacology.