On a Generalized Central Limit Theorem and Large Deviations for Homogeneous Open Quantum Walks

We consider homogeneous open quantum random walks on a lattice with finite dimensional local Hilbert space and we study in particular the position process of the quantum trajectories of the walk. We prove that the properly rescaled position process asymptotically approaches a mixture of Gaussian measures. We can generalize the existing central limit type results and give more explicit expressions for the involved asymptotic quantities, dropping any additional condition on the walk. We use deformation and spectral techniques, together with reducibility properties of the local channel associated with the open quantum walk. Further, we can provide a large deviations’ principle in the case of a fast recurrent local channel and at least lower and upper bounds in the general case.

[1]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[2]  R. Carbone,et al.  Homogeneous Open Quantum Random Walks on a Lattice , 2014, 1408.1113.

[3]  T. S. Jacq,et al.  Homogeneous Open Quantum Walks on the Line: Criteria for Site Recurrence and Absorption , 2020, Quantum Inf. Comput..

[4]  F. Petruccione,et al.  Open Quantum Walks on Graphs , 2012, 1401.3305.

[5]  A. Jenčová,et al.  On Period, Cycles and Fixed Points of a Quantum Channel , 2019, Annales Henri Poincaré.

[6]  Y. Pautrat,et al.  Passage Times, Exit Times and Dirichlet Problems for Open Quantum Walks , 2016, 1610.06772.

[7]  A. Ekert,et al.  Decoherence-assisted transport in quantum networks , 2014, 1401.6660.

[8]  Chul Ki Ko,et al.  Mixture of Gaussians in the open quantum random walks , 2020, Quantum Inf. Process..

[9]  Francesco Petruccione,et al.  Efficiency of open quantum walk implementation of dissipative quantum computing algorithms , 2012, Quantum Inf. Process..

[10]  C. Pellegrini Continuous Time Open Quantum Random Walks and Non-Markovian Lindblad Master Equations , 2014 .

[11]  F. Mukhamedov,et al.  Open Quantum Random Walks, Quantum Markov Chains and Recurrence , 2016, 1608.01065.

[12]  F. Petruccione,et al.  Open Quantum Random Walks , 2012, 1402.3253.

[13]  Raffaella Carbone,et al.  Irreducible decompositions and stationary states of quantum channels , 2015, 1507.08404.

[14]  Norio Konno,et al.  Limit Theorems for Open Quantum Random Walks , 2012, 1209.1419.

[15]  Lukasz Pawela,et al.  Central limit theorem for reducible and irreducible open quantum walks , 2014, Quantum Inf. Process..

[17]  Raffaella Carbone,et al.  Absorption in Invariant Domains for Semigroups of Quantum Channels , 2021, Annales Henri Poincaré.

[18]  I. Sinayskiy,et al.  Open quantum walks , 2019, The European Physical Journal Special Topics.

[19]  Veronica Umanità,et al.  Classification and decomposition of Quantum Markov Semigroups , 2006 .

[20]  D. Petz,et al.  Sufficiency in Quantum Statistical Inference , 2004, math-ph/0412093.

[21]  I. Sinayskiy,et al.  Lazy open quantum walks , 2019, 1908.04124.

[22]  Hugo Bringuier,et al.  Central Limit Theorem and Large Deviation Principle for Continuous Time Open Quantum Walks , 2016, 1610.01298.

[23]  B. Baumgartner,et al.  The structures of state space concerning Quantum Dynamical Semigroups , 2011, 1101.3914.

[24]  Central Limit Theorems for Open Quantum Random Walks and Quantum Measurement Records , 2012, 1206.1472.

[25]  Tosio Kato Perturbation theory for linear operators , 1966 .

[26]  Wlodzimierz Bryc,et al.  A remark on the connection between the large deviation principle and the central limit theorem , 1993 .