A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces

We introduce a relaxed-projection splitting algorithm for solving variational inequalities in Hilbert spaces for the sum of nonsmooth maximal monotone operators, where the feasible set is defined by a nonlinear and nonsmooth continuous convex function inequality. In our scheme, the orthogonal projections onto the feasible set are replaced by projections onto separating hyperplanes. Furthermore, each iteration of the proposed method consists of simple subgradient-like steps, which does not demand the solution of a nontrivial subproblem, using only individual operators, which exploits the structure of the problem. Assuming monotonicity of the individual operators and the existence of solutions, we prove that the generated sequence converges weakly to a solution.

[1]  Yair Censor,et al.  The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space , 2011, J. Optim. Theory Appl..

[2]  Bingsheng He,et al.  A new method for a class of linear variational inequalities , 1994, Math. Program..

[3]  A. Iusem,et al.  An extragradient-type algorithm for non-smooth variational inequalities , 2000 .

[4]  Ronald E. Bruck On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space , 1977 .

[5]  R. Díaz Millán,et al.  A Direct Splitting Method for Nonsmooth Variational Inequalities , 2014, J. Optim. Theory Appl..

[6]  E. H. Zarantonello Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .

[7]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[8]  P. L. Combettes,et al.  Quasi-Fejérian Analysis of Some Optimization Algorithms , 2001 .

[9]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[10]  M. Solodov,et al.  A New Projection Method for Variational Inequality Problems , 1999 .

[11]  P. Tseng,et al.  Modified Projection-Type Methods for Monotone Variational Inequalities , 1996 .

[12]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[13]  T. Q. Bao,et al.  A Projection-Type Algorithm for Pseudomonotone Nonlipschitzian Multivalued Variational Inequalities , 2005 .

[14]  J. Y. Bello Cruz,et al.  Level bundle-like algorithms for convex optimization , 2013, Journal of Global Optimization.

[15]  A. Iusem,et al.  A variant of korpelevich’s method for variational inequalities with a new search strategy , 1997 .

[16]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[17]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[18]  Gregory B. Passty Ergodic convergence to a zero of the sum of monotone operators in Hilbert space , 1979 .

[19]  Sien Deng Computable Error Bounds For Convex Inequality Systems In Reflexive Banach Spaces , 1997, SIAM J. Optim..

[20]  J. Y. Bello Cruz,et al.  An explicit algorithm for monotone variational inequalities , 2012 .

[21]  I. Konnov Combined Relaxation Methods for Variational Inequalities , 2000 .

[22]  Juan Peypouquet,et al.  Coupling Forward-Backward with Penalty Schemes and Parallel Splitting for Constrained Variational Inequalities , 2011, SIAM J. Optim..

[23]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[24]  A. Moudafi On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces , 2009 .

[25]  Mau-Hsiang Shih,et al.  Browder-Hartman-Stampacchia variational inequalities for multi-valued monotone operators☆ , 1988 .

[26]  A. Iusem,et al.  Set-valued mappings and enlargements of monotone operators , 2008 .

[27]  J. Y. Bello Cruz,et al.  A Strongly Convergent Direct Method for Monotone Variational Inequalities in Hilbert Spaces , 2009 .

[28]  Masao Fukushima,et al.  A relaxed projection method for variational inequalities , 1986, Math. Program..

[29]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[30]  Alfredo N. Iusem,et al.  Convergence of direct methods for paramonotone variational inequalities , 2010, Comput. Optim. Appl..

[31]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[32]  Igor V. Konnov,et al.  A combined relaxation method for variational inequalities with nonlinear constraints , 1998, Math. Program..

[33]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[34]  Alfredo N. Iusem,et al.  Full convergence of an approximate projection method for nonsmooth variational inequalities , 2015, Math. Comput. Simul..

[35]  R. Rockafellar On the maximality of sums of nonlinear monotone operators , 1970 .

[36]  Marc Teboulle,et al.  Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..

[37]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[38]  José Yunier Bello Cruz,et al.  A Strongly Convergent Method for Nonsmooth Convex Minimization in Hilbert Spaces , 2011 .

[39]  Benar Fux Svaiter,et al.  General Projective Splitting Methods for Sums of Maximal Monotone Operators , 2009, SIAM J. Control. Optim..

[40]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[41]  Regina Sandra Burachik,et al.  An Outer Approximation Method for the Variational Inequality Problem , 2005, SIAM J. Control. Optim..

[42]  R. Rockafellar,et al.  On the maximal monotonicity of subdifferential mappings. , 1970 .

[43]  Radu Ioan Bot,et al.  A Douglas-Rachford Type Primal-Dual Method for Solving Inclusions with Mixtures of Composite and Parallel-Sum Type Monotone Operators , 2012, SIAM J. Optim..

[44]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[45]  Majid Fakhar,et al.  On generalized variational inequalities , 2009, J. Glob. Optim..

[46]  Dimitri P. Bertsekas,et al.  Incremental Subgradient Methods for Nondifferentiable Optimization , 2001, SIAM J. Optim..

[47]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[48]  Yu. M. Ermol’ev On the method of generalized stochastic gradients and quasi-Féjer sequences , 1969 .

[49]  M. Todd The Computation of Fixed Points and Applications , 1976 .

[50]  Alfredo N. Iusem,et al.  On the projected subgradient method for nonsmooth convex optimization in a Hilbert space , 1998, Math. Program..

[51]  Hui Zhang,et al.  Projective splitting methods for sums of maximal monotone operators with applications , 2013 .