Implicit Hamiltonian Monte Carlo for Sampling Multiscale Distributions
暂无分享,去创建一个
[1] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[2] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[3] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[4] Uri M. Ascher,et al. Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .
[5] Carl D. Meyer,et al. Matrix Analysis and Applied Linear Algebra , 2000 .
[6] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[7] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[8] Homer F. Walker,et al. Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..
[9] Uri M. Ascher,et al. On Some Difficulties in Integrating Highly Oscillatory Hamiltonian Systems , 1999, Computational Molecular Dynamics.
[10] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[11] Hideyuki Suzuki,et al. Hamiltonian Monte Carlo with explicit, reversible, and volume-preserving adaptive step size control , 2017, JSIAM Lett..
[12] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[13] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .
[14] Michael Betancourt,et al. A General Metric for Riemannian Manifold Hamiltonian Monte Carlo , 2012, GSI.
[15] Michael Betancourt,et al. A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.
[16] Wolfram Burgard,et al. Robotics: Science and Systems XV , 2010 .
[17] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[18] Babak Shahbaba,et al. Split Hamiltonian Monte Carlo , 2011, Stat. Comput..
[19] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[20] Justin Solomon,et al. Exponential Integration for Hamiltonian Monte Carlo , 2015, ICML.
[21] Gregory S. Chirikjian,et al. The Banana Distribution is Gaussian: A Localization Study with Exponential Coordinates , 2012, Robotics: Science and Systems.