Polyhedral approximation in mixed-integer convex optimization

Generalizing both mixed-integer linear optimization and convex optimization, mixed-integer convex optimization possesses broad modeling power but has seen relatively few advances in general-purpose solvers in recent years. In this paper, we intend to provide a broadly accessible introduction to our recent work in developing algorithms and software for this problem class. Our approach is based on constructing polyhedral outer approximations of the convex constraints, resulting in a global solution by solving a finite number of mixed-integer linear and continuous convex subproblems. The key advance we present is to strengthen the polyhedral approximations by constructing them in a higher-dimensional space. In order to automate this extended formulation we rely on the algebraic modeling technique of disciplined convex programming (DCP), and for generality and ease of implementation we use conic representations of the convex constraints. Although our framework requires a manual translation of existing models into DCP form, after performing this transformation on the MINLPLIB2 benchmark library we were able to solve a number of unsolved instances and on many other instances achieve superior performance compared with state-of-the-art solvers like Bonmin, SCIP, and Artelys Knitro.

[1]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[2]  Oktay Günlük,et al.  Perspective Reformulation and Applications , 2012 .

[3]  Juan Pablo Vielma,et al.  A Strong Dual for Conic Mixed-Integer Programs , 2012, SIAM J. Optim..

[4]  Samuel Burer,et al.  How to convexify the intersection of a second order cone and a nonconvex quadratic , 2014, Math. Program..

[5]  Hassan L. Hijazi,et al.  An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs , 2014, INFORMS J. Comput..

[6]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[7]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[8]  Juan Pablo Vielma,et al.  The Chvátal-Gomory Closure of an Ellipsoid Is a Polyhedron , 2010, IPCO.

[9]  Sercan Yildiz,et al.  Two-term disjunctions on the second-order cone , 2014, IPCO.

[10]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[11]  Juan Pablo Vielma,et al.  Intersection cuts for nonlinear integer programming: convexification techniques for structured sets , 2013, Mathematical Programming.

[12]  Gérard Cornuéjols,et al.  Disjunctive cuts for cross-sections of the second-order cone , 2015, Oper. Res. Lett..

[13]  Mehmet Tolga Çezik,et al.  Cuts for mixed 0-1 conic programming , 2005, Math. Program..

[14]  Christian Kirches,et al.  Mixed-integer nonlinear optimization*† , 2013, Acta Numerica.

[15]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..

[16]  Sven Leyffer,et al.  On branching rules for convex mixed-integer nonlinear optimization , 2013, JEAL.

[17]  John N. Tsitsiklis,et al.  NP-hardness of deciding convexity of quartic polynomials and related problems , 2010, Math. Program..

[18]  Iain Dunning,et al.  Computing in Operations Research Using Julia , 2013, INFORMS J. Comput..

[19]  Dominique Orban,et al.  DrAmpl: a meta solver for optimization problem analysis , 2010, Comput. Manag. Sci..

[20]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[21]  George L. Nemhauser,et al.  A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed-Integer Conic Quadratic Programs , 2008, INFORMS J. Comput..

[22]  Omprakash K. Gupta,et al.  Branch and Bound Experiments in Convex Nonlinear Integer Programming , 1985 .

[23]  Kent Andersen,et al.  Intersection Cuts for Mixed Integer Conic Quadratic Sets , 2013, IPCO.

[24]  Leo Liberti,et al.  Constraint Qualification Failure in Second-Order Cone Formulations of Unbounded Disjunctions , 2014 .

[25]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[26]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[27]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[28]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[29]  Sven Leyffer,et al.  Deterministic Methods for Mixed Integer Nonlinear Programming , 1993 .

[30]  Pietro Belotti,et al.  On families of quadratic surfaces having fixed intersections with two hyperplanes , 2013, Discret. Appl. Math..

[31]  Stephen P. Boyd,et al.  Disciplined Convex Programming , 2006 .

[32]  Juan Pablo Vielma,et al.  Convex hull of two quadratic or a conic quadratic and a quadratic inequality , 2017, Math. Program..

[33]  S. Ulbrich,et al.  MIXED INTEGER SECOND ORDER CONE PROGRAMMING , 2008 .

[34]  Julio C. Góez,et al.  A Conic Representation of the Convex Hull of Disjunctive Sets and Conic Cuts for Integer Second Order Cone Optimization , 2015 .

[35]  Le Thi Khanh Hien,et al.  Differential properties of Euclidean projection onto power cone , 2015, Math. Methods Oper. Res..

[36]  Russell Bent,et al.  Extended Formulations in Mixed-Integer Convex Programming , 2015, IPCO.

[37]  R. Kipp Martin,et al.  Large scale linear and integer optimization - a unified approach , 1998 .

[38]  Stephen P. Boyd,et al.  Convex Optimization in Julia , 2014, 2014 First Workshop for High Performance Technical Computing in Dynamic Languages.

[39]  Hassan L. Hijazi,et al.  Constraint qualification failure in action , 2016, Oper. Res. Lett..

[40]  Timo Berthold,et al.  Algorithms for discrete nonlinear optimization in FICO Xpress , 2016, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).

[41]  Juan Pablo Vielma,et al.  Split cuts and extended formulations for Mixed Integer Conic Quadratic Programming , 2015, Oper. Res. Lett..

[42]  Sebastián Ceria,et al.  Convex programming for disjunctive convex optimization , 1999, Math. Program..

[43]  Sven Leyffer,et al.  FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs , 2010, INFORMS J. Comput..

[44]  Stefan Ulbrich,et al.  A framework for solving mixed-integer semidefinite programs , 2018, Optim. Methods Softw..

[45]  Alper Atamtürk,et al.  Conic mixed-integer rounding cuts , 2009, Math. Program..

[46]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[47]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[48]  Fatma Kilinç-Karzan,et al.  On Minimal Valid Inequalities for Mixed Integer Conic Programs , 2014, Math. Oper. Res..

[49]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[50]  Jeff T. Linderoth,et al.  Algorithms and Software for Convex Mixed Integer Nonlinear Programs , 2012 .

[51]  Stephen P. Boyd,et al.  Disciplined convex-concave programming , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[52]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[53]  Alberto Caprara,et al.  An effective branch-and-bound algorithm for convex quadratic integer programming , 2010, Math. Program..

[54]  M. Jünger,et al.  50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art , 2010 .

[55]  Daniel Dadush,et al.  The split closure of a strictly convex body , 2011, Oper. Res. Lett..

[56]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[57]  Iiro Harjunkoski,et al.  Different transformations for solving non-convex trim-loss problems by MINLP , 1998, Eur. J. Oper. Res..

[58]  Iain Dunning,et al.  Extended formulations in mixed integer conic quadratic programming , 2015, Mathematical Programming Computation.