Magnesium‐μ‐(9,10‐dihydro‐9,10‐anthrylen)‐aluminate; Komplexe des „Anthracenmagnesiums”︁

Das schwerlosliche „Anthracenmagnesium” 1a ⋅ n THF reagiert in THF mit Dialkylaluminiumhydriden zu den Magnesium-μ-(9,10-dihydro-9,10-anthrylen)-dialkylhydridoaluminaten 2a – c, mit Aluminiumtrihydrid zum entsprechenden -trihydridoaluminat 2d und mit Ethoxydiethyl-aluminium zum -ethoxydiethylaluminat 6. Die Konstitutionen der Komplexe 2a – c und 6 in THF wurden mittels NMR-Spektroskopie bestimmt. Nach dem Ergebnis der Rontgenstrukturanalyse von 2b (Alkyl = Et) besetzen Al und Mg im 9,10-Dihydro-9,10-anthrylen-System axiale Positionen, und es besteht bindende Wechselwirkung zwischen dem Mg⊕-Kation und dem Hydridwasserstoff des Aluminat-Anions. Analoge Komplexe 3 mit Trialkylaluminium lassen sich nur erhalten, wenn 1a ⋅ n THF mit mindestens (n + 1) AlR3 (R = Me, Et) in nicht-Lewis-basischen Losungsmitteln umgesetzt wird. Ether spalten die Komplexe 3 wieder in Trialkylaluminium-etherat, z. B. 4 oder 5, und 1a. In Diethylether ist letzteres nicht stabil und zerfallt in Magnesium und Anthracen. Magnesium-μ-(9,10-dihydro-9,10-anthrylene)-aluminates; Complexes of “Anthracenemagnesium” The relatively insoluble “anthracenemagnesium” 1a ⋅ n THF reacts in THF with dialkylaluminium hydrides to give magnesium-μ-(9,10-dihydro-9,10-anthrylene)-dialkylhydridoaluminates 2a – c, with aluminium trihydride the corresponding -trihydridoaluminate 2d and with ethoxydiethylaluminium the -ethoxydiethylaluminate 6. The structures of the compounds 2a – c and 6 dissolved in THF were determined by NMR spectroscopy. An X-ray crystallographic investigation of 2b (alkyl = ethyl) shows that Al and Mg occupy axial positions in a 9,10-dihydro-9,10-anthrylene system. The Mg⊕ cation interacts with the hydride of the aluminate anion. Analogous complexes 3 with trialkylaluminium can only be obtained if 1a ⋅ n THF is reacted with (n + 1) AIR3 (R = methyl, ethyl) in non-Lewis base solvents. Ether cause the cleavage of 3 into trialkylaluminium etherate, e. g. 4 or 5, and 1a, which is unstable in diethyl ether and decomposes into magnesium and anthracene.

[1]  H. Günther,et al.  Modern Pulse Methods in High‐Resolution NMR Spectroscopy , 1983 .

[2]  D. T. Pegg,et al.  Distortionless enhancement of NMR signals by polarization transfer , 1982 .

[3]  R. Benn,et al.  Fluxional behaviour in η3-allyl complexes of cr, mo and w as shown by magnetisation transfer difference spectroscopy (MTDS) , 1981 .

[4]  B. Bogdanović,et al.  Katalytische Synthese von Magnesiumhydrid unter milden Bedingungen , 1980 .

[5]  B. Bogdanovic,et al.  Catalytic Synthesis of Magnesium Hydride under Mild Conditions , 1980 .

[6]  G. D. Piero,et al.  The chemistry and the stereochemistry of poly(N-alkyliminoalanes) : XV. The crystal and molecular structure of the compounds [((THF)Mg)(HA1N-t-Bu)3] and [((THF)3Ca)(HA1N-t-Bu)3] · THF , 1977 .

[7]  G. D. Piero,et al.  The chemistry and the stereochemistry of poly (N-alkyliminoalanes) : XI. The crystal and molecular structure of the hexamer (HAlN-n-Pr)6 and the octamer (Haln-n-Pr)8 , 1977 .

[8]  D. Brauer,et al.  Stereochemistry of transition metal-cyclooctatetraenyl complexes. Molecular structure of .eta.-cyclooctatetraenyl(tetrahydrofuran)dichlorozirconium , 1975 .

[9]  G. D. Piero,et al.  The chemistry and the stereochemistry of poly(N-alkyliminoalanes) : IV. The preparation and crystal structure of [H(HAlN-i-Pr)5AlH2]·LiH/Et2O , 1975 .

[10]  G. D. Piero,et al.  THE CHEMISTRY AND THE STEREOCHEMISTRY OF POLY(N-ALKYLIMINOALANES) PART 2, THE CRYSTAL AND MOLECULAR STRUCTURE OF THE HEXAMER, (HA1N-I-PR)6 , 1974 .

[11]  G. Stucky Stereochemical Properties ofN-Chelated Alkali Metal Complexes , 1974 .

[12]  Lloyd J. Guggenberger,et al.  Aluminotitanium hydrides [(C5H5)Ti]2(H)(H2AlEt2)C10H8) and [(C5H4)TiHAlEt2]2(C10H8) , 1973 .

[13]  G. Stucky,et al.  π-Groups in ion-pair bonding. The molecular structure of bis(tetrahydrofuran)sodium (9,10-dihydro-9,10-anthrylene)dimethylaluminate [Na(C4H8O)2]2[Al(CH3)2C14H10]2, a sodium/trimethylaluminum reduction product of anthracene , 1972 .

[14]  G. Stucky,et al.  .pi.-Complexation in ion-pair bonding. Tetra(1,4-epoxybutane)disodium(I) tetramethylbis-1,4-dihydro-1,4-naphthylenedialuminate, [Na(C4H8O)2]2[Al(CH3)2C10H8]2, a novel organoaluminate structure , 1970 .

[15]  M. Vallino Structure cristalline de CH3MgBr·3 C4H8O , 1969 .

[16]  H. Lehmkuhl Metallorganische Verbindungen, L1) Alkali‐dialkylaluminium‐dihydroaromaten , 1968 .

[17]  H. Lehmkuhl Aluminium‐Aromaten‐Verbindungen , 1965 .

[18]  M. Schneider,et al.  Reaction of Organolithium Compounds with Silicon Dioxide , 1965 .

[19]  H. Lehmkuhl Complex Formation with Organoaluminum Compounds , 1964 .

[20]  H. Lehmkuhl Zur Komplexbildung aluminiumorganischer Verbindungen , 1963 .

[21]  E. Hoffmann Adiabatische Kryometrie und ihre Anwendung auf Organoaluminium‐Verbindungen , 1960 .

[22]  J. Schneider,et al.  Metallorganische Verbindungen XIX: Reaktionen der Aluminium‐ Wasserstoff‐Bindung mit Olefinen , 1954 .

[23]  H. Schlesinger,et al.  Reactions of Lithium Aluminum Hydride with Representative Elements of the Main Groups of the Periodic System1 , 1953 .

[24]  H. Schlesinger,et al.  Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry1 , 1947 .

[25]  N. Davidson,et al.  The Polymerization of Some Derivatives of Trimethylaluminum , 1942 .