Ferrocene-Based Artificial Interfacial Layer for High-Performance Lithium Metal Anodes: Continuous Regulation of Li+ Diffusion Behavior.

The diversified design of hybrid artificial layers is a promising method for suppressing the Li dendrite growth and maintaining high Colombic efficiency of lithium (Li) metal anode. Previously, various kinds of organic/inorganic hybrid artificial layers were constructed on the Li metal anode and possessed a positive effect on electrochemical performance. However, the tunable synthesis of artificial layers to continuously regulate the Li diffusion behavior remains a challenge. In this work, the Li diffusion behavior could be tuned by modulating the proportion of components (LiClO4, PMMA and ferrocene (Fc)) in the hybrid artificial layer (LF layer). After optimizing the proportion of each component, the resultant artificial SEI layer exhibits a high Li+ transference number (tLi+ = 0.66) and a high Young's modulus (4.8 GPa). Based on the excellent properties of the as-constructed Fc-based artificial SEI layer, a high-performance lithium anode with no volume effect and dendrite growth is achieved. The Li||Li symmetric cells with a Fc-based artificial SEI layer yielded a stable cycle performance for 1500 h with a high current density of 10 mA cm-2. The pouch cell with LF@Li anode coupled with high-loading LiFePO4 cathode (12.8 mg cm-2) exhibits excellent cyclic stability for 250 cycles with a capacity retention of 75% at 0.5C rate.

[1]  Li Li,et al.  Stabilization of Lithium Metal Interfaces by Constructing Composite Artificial Solid Electrolyte Interface with Mesoporous TiO2 and Perfluoropolymers. , 2022, Small.

[2]  K. Yu,et al.  Constructing LiF-rich artificial SEI at a two-dimensional copper net current collector in anode-free lithium metal batteries , 2022, Surfaces and Interfaces.

[3]  M. Tadé,et al.  Ionically and Electronically Conductive Phases in a Composite Anode for High-Rate and Stable Lithium Stripping and Plating for Solid-State Lithium Batteries. , 2022, ACS applied materials & interfaces.

[4]  Xi Ke,et al.  Building a stable artificial solid electrolyte interphase on lithium metal anodes toward long-life Li–O2 batteries , 2022, Journal of Power Sources.

[5]  Liubin Song,et al.  Self-Healing Artificial Solid Electrolyte Interphase Enhanced by Quadruple Hydrogen Bonding for Stable Lithium Metal Anode , 2022, Applied Surface Science.

[6]  Huaihe Song,et al.  Lithiophilic onion-like carbon spheres as lithium metal uniform deposition host. , 2022, Journal of colloid and interface science.

[7]  Kyoohee Woo,et al.  A 2D Ultrathin Nanopatterned Interlayer to Suppress Lithium Dendrite Growth in High‐Energy Lithium‐Metal Anodes , 2022, Advanced materials.

[8]  Xiqian Yu,et al.  Controlling the Li deposition below the interface , 2022, eScience.

[9]  Y. Lai,et al.  A Self-adapting Artificial SEI Layer Enables Superdense Lithium Deposition for High Performance Lithium Anode , 2021, Energy Storage Materials.

[10]  G. Wang,et al.  Grain‐Boundary‐Rich Artificial SEI Layer for High‐Rate Lithium Metal Anodes , 2021, Advanced Functional Materials.

[11]  Guangmin Zhou,et al.  Stabilized Solid Electrolyte Interphase Induced by Ultrathin Boron Nitride Membranes for Safe Lithium Metal Batteries. , 2021, Nano letters.

[12]  Xunhui Xiong,et al.  Phenoxy Radical-induced Formation of Dual-Layered Protection Film for High-Rate and Dendrite-free Lithium Metal Anodes. , 2021, Angewandte Chemie.

[13]  Yong Yang,et al.  Lithium Host:Advanced architecture components for lithium metal anode , 2021 .

[14]  Zhian Zhang,et al.  Controllable lithium deposition behavior hollow of N, O co-doped carbon nanospheres for practical lithium metal batteries , 2021 .

[15]  Xuliang Yin,et al.  Revealing Anion Adsorption Mechanism for Coating Layer on Separator toward Practical Li Metal Batteries. , 2021, ACS applied materials & interfaces.

[16]  B. Hwang,et al.  Highly-lithiophilic Ag@PDA-GO film to Suppress Dendrite Formation on Cu Substrate in Anode-free Lithium Metal Batteries , 2021 .

[17]  R. Zhao,et al.  A Stretchable Ionic Conductive Elastomer for High‐Areal‐Capacity Lithium‐Metal Batteries , 2021, ENERGY & ENVIRONMENTAL MATERIALS.

[18]  Yanbin Shen,et al.  A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium–sulfur batteries , 2020, Journal of Energy Chemistry.

[19]  H. Kim,et al.  Nonwoven rGO Fiber‐Aramid Separator for High‐Speed Charging and Discharging of Li Metal Anode , 2020, Advanced Energy Materials.

[20]  Y. Lai,et al.  Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering , 2020 .

[21]  Cheng Li,et al.  Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries , 2020 .

[22]  Y. Lai,et al.  Surface engineering of commercial Ni foams for stable Li metal anodes , 2019 .

[23]  Longlong Wang,et al.  Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High‐Voltage Solid‐State Lithium Metal Battery , 2019, Advanced science.

[24]  Zaiping Guo,et al.  Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries , 2019, Nano Energy.

[25]  Zhian Zhang,et al.  Encapsulating Metallic Lithium into Carbon Nanocages Enables Low Volume Effect and Dendrite-Free Lithium Metal Anode. , 2019, ACS applied materials & interfaces.

[26]  Chunsheng Wang,et al.  High-Energy Li Metal Battery with Lithiated Host , 2019, Joule.

[27]  Yao Zhou,et al.  Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries , 2019, Chinese Chemical Letters.

[28]  Qinghua Zhang,et al.  Self-Standing 3D Cathodes for All-Solid-State Thin Film Lithium Batteries with Improved Interface Kinetics. , 2018, Small.

[29]  Li‐Zhen Fan,et al.  Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte , 2018, Energy Storage Materials.

[30]  Henghui Zhou,et al.  Stable Li metal anode with protected interface for high-performance Li metal batteries , 2018, Energy Storage Materials.

[31]  Y. Lai,et al.  Electron-rich functional doping carbon host as dendrite-free lithium metal anode , 2018, Electrochimica Acta.

[32]  S. Choudhury,et al.  Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries , 2018, Nature.

[33]  Han Jin,et al.  Insight into the effect of lithium-dendrite suppression by lithium bis(fluorosulfony)imide/1,2-dimethoxyethane electrolytes , 2018, Electrochimica Acta.

[34]  Hui Xu,et al.  Developing High‐Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress , 2018, Advanced materials.

[35]  Gunther Reinhart,et al.  All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production , 2018 .

[36]  Jun Liu,et al.  Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. , 2018, ACS applied materials & interfaces.

[37]  L. M. Rodriguez-Martinez,et al.  Stable cycling of lithium metal electrode in nanocomposite solid polymer electrolytes with lithium bis(fluorosulfonyl)imide , 2017 .

[38]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[39]  Ting Yang,et al.  Comparative analysis of the photocatalytic reduction of drinking water oxoanions using titanium dioxide. , 2016, Water research.

[40]  Yi Cui,et al.  Promises and challenges of nanomaterials for lithium-based rechargeable batteries , 2016, Nature Energy.

[41]  E. Tervoort,et al.  Ultrasmall Cu3N Nanoparticles: Surfactant-Free Solution-Phase Synthesis, Nitridation Mechanism, and Application for Lithium Storage , 2015 .

[42]  J. Tu,et al.  An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries , 2015 .

[43]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[44]  S. Chu,et al.  Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. , 2014, Nano letters.

[45]  R. de Marco,et al.  Transport and accumulation of ferrocene tagged poly(vinyl chloride) at the buried interfaces of plasticized membrane electrodes. , 2013, The Analyst.

[46]  F. Muñoz Comments on the structure of LiPON thin-film solid electrolytes , 2012 .

[47]  X. Bao,et al.  π-π Interaction intercalation of layered carbon materials with metallocene. , 2011, Dalton transactions.

[48]  B. Chowdari,et al.  XPS studies on (PEO){sub n}LiClO{sub 4} and (PEO){sub n} Cu(ClO{sub 4}){sub 2} polymer electrolytes , 1995 .

[49]  Qiang Zhang,et al.  Spatially uniform deposition of lithium metal in 3D Janus hosts , 2019, Energy Storage Materials.

[50]  Hui Wu,et al.  One-pot solution coating of high quality LiF layer to stabilize Li metal anode , 2019, Energy Storage Materials.

[51]  T. Zhai,et al.  PMMA-assisted Li deposition towards 3D continuous dendrite-free lithium anode , 2019, Energy Storage Materials.

[52]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.