TiO2—a prototypical memristive material

Redox-based memristive switching has been observed in many binary transition metal oxides and related compounds. Since, on the one hand, many recent reports utilize TiO2 for their studies of the memristive phenomenon and, on the other hand, there is a long history of the electronic structure and the crystallographic structure of TiO2 under the impact of reduction and oxidation processes, we selected this material as a prototypical material to provide deeper insight into the mechanisms behind memristive switching. In part I, we briefly outline the results of the historical and recent studies of electroforming and resistive switching of TiO2-based cells. We describe the (tiny) stoichiometrical range for TiO2 − x as a homogeneous compound, the aggregation of point defects (oxygen vacancies) into extended defects, and the formation of the various Magnéli phases. Furthermore, we discuss the driving forces for these solid-state reactions from the thermodynamical point of view. In part II, we provide new experimental details about the hierarchical transformation of TiO2 single crystals into Magnéli phases, and vice versa, under the influence of chemical, electrical and thermal gradients, on the basis of the macroscopic and nanoscopic measurements. Those include thermogravimetry, high-temperature x-ray diffraction (XRD), high-temperature conductivity measurements, as well as low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and LC-AFM (atomic force microscope equipped with a conducting tip) studies. Conclusions are drawn concerning the relevant parameters that need to be controlled in order to tailor the memristive properties.

[1]  Sung-Yool Choi,et al.  Interface‐Engineered Amorphous TiO2‐Based Resistive Memory Devices , 2010 .

[2]  P. K. Datta,et al.  The new high-temperature surface structure on reduced TiO2(001) , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  F. Walsh,et al.  The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes , 2010 .

[4]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[5]  Cheol Seong Hwang,et al.  A Pt/TiO2/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays , 2010, Nanotechnology.

[6]  Cheol Seong Hwang,et al.  Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy , 2010 .

[7]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[8]  Anomalous state sandwiched between Fermi liquid and charge ordered Mott-insulating phases of Ti4O7. , 2009, Physical review letters.

[9]  J. Yang,et al.  Electrical transport and thermometry of electroformed titanium dioxide memristive switches , 2009 .

[10]  John Paul Strachan,et al.  Structural and chemical characterization of TiO2 memristive devices by spatially-resolved NEXAFS , 2009, Nanotechnology.

[11]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[12]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[13]  Jin Pyo Hong,et al.  Hysteretic bipolar resistive switching characteristics in TiO2/TiO2−x multilayer homojunctions , 2009 .

[14]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[15]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[16]  J. Evans,et al.  A model for the electrochemical reduction of metal oxides in molten salt electrolytes , 2008 .

[17]  Xinman Chen,et al.  Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications , 2008 .

[18]  Jinlong Yang,et al.  Formation and diffusion of oxygen-vacancy pairs on TiO2(110)-(1x1). , 2008, The Journal of chemical physics.

[19]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[20]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[21]  G. I. Meijer,et al.  Who Wins the Nonvolatile Memory Race? , 2008, Science.

[22]  S. Haddad,et al.  Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory , 2008 .

[23]  G. Watson,et al.  A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface , 2007 .

[24]  Zheng Wang,et al.  Field-programmable rectification in rutile TiO2 crystals , 2007 .

[25]  G. Snider,et al.  Self-organized computation with unreliable, memristive nanodevices , 2007 .

[26]  I. K. Karpov,et al.  Thermodynamic analysis of the stability of titanium oxides in the TiO-TiO2 range , 2007 .

[27]  P. K. Datta,et al.  Room and high-temperature scanning tunnelling microscopy and spectroscopy (HT-STM/STS) investigations of surface nanomodifications created on the TiO 2 (1 1 0) surface , 2007 .

[28]  N. Tanaka,et al.  Direct observation of oxygen atoms in rutile titanium dioxide by spherical aberration corrected high-resolution transmission electron microscopy , 2006 .

[29]  Masashi Kawasaki,et al.  Interface resistance switching at a few nanometer thick perovskite manganite active layers , 2006 .

[30]  P. K. Datta,et al.  Scanning tunnelling microscopy and spectroscopy of the reduced TiO2(100) surface , 2006 .

[31]  N. Wu,et al.  Spatially extended nature of resistive switching in perovskite oxide thin films , 2006, cond-mat/0601451.

[32]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[33]  Resistance Degradation of Iron-Doped Strontium Titanate Investigated by Spatially Resolved Conductivity Measurements , 2004 .

[34]  Molecular oxygen-mediated vacancy diffusion on TiO2(110)-new studies of the proposed mechanism , 2004 .

[35]  Satoshi Okamoto,et al.  Electronic reconstruction at an interface between a Mott insulator and a band insulator , 2004, Nature.

[36]  Z. Klusek,et al.  Insulator–metal transition on heavily reduced TiO2(1 1 0) surface studied by high temperature-scanning tunnelling spectroscopy (HT-STS) , 2004 .

[37]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[38]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[39]  Derek J. Fray,et al.  Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride , 2000, Nature.

[40]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[41]  M. P. Sears,et al.  Oxygen-induced restructuring of the TiO2(110) surface: a comprehensive study , 1999 .

[42]  R. L. Clarke,et al.  Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials , 1998 .

[43]  A. Pergament,et al.  Electroforming and Switching in Oxides of Transition Metals: The Role of Metal-Insulator Transition in the Switching Mechanism , 1996 .

[44]  K. Szot,et al.  Microscopic nature of the metal to insulator phase transition induced through electroreduction in single‐crystal KNbO3 , 1992 .

[45]  R. Waser,et al.  dc Electrical Degradation of Perovskite‐Type Titanates: II, Single Crystals , 1990 .

[46]  N. L. Peterson,et al.  Diffusion and point defects in TiO2−x , 1985 .

[47]  M. Blanchin,et al.  Resolution of atomic steps on dislocations in rutile , 1984 .

[48]  M. Marezio,et al.  Structural chemistry of magnéli phases TinO2n−1 (4 ≤ n ≤ 9): IV. Superstructure in Ti4O7 at 140 K , 1984 .

[49]  Y. Le Page,et al.  Electrical conductance of crystalline TinO2n-1 for n=4-9 , 1983 .

[50]  M. Kobayashi,et al.  Depth Profile Measurement by Secondary Ion Mass Spectrometry for Determining the Tracer Diffusivity of Oxygen in Rutile , 1979 .

[51]  A. Magnéli Non-stoichiometry and structural disorder in some families of inorganic compounds , 1978 .

[52]  J. Baumard,et al.  A study of TiO system between Ti3O5 and TiO2 at high temperature by means of electrical resistivity , 1977 .

[53]  G. Taylor,et al.  RF relaxation oscillations in polycrystalline TiO2 thin films , 1976 .

[54]  B. Hyde,et al.  Oxygen tracer diffusion in the magnéli phases TinO2n−1 , 1976 .

[55]  D. Mcwhan,et al.  Structural Aspects of the Metal-Insulator Transition in V5O9 , 1974 .

[56]  D. K. Philp,et al.  New crystallographic shear families derived from the rutile structure, and the possibility of continuous ordered solid solution , 1971 .

[57]  G. Gordon,et al.  Oxygen diffusion in single crystals of titanium dioxide , 1971 .

[58]  J. S. Anderson,et al.  Lattice energies and heats of formation of the TinO2n−1 shear phases , 1971 .

[59]  O. Terasaki,et al.  On a new family of titanium oxides and the nature of slightly-reduced rutile , 1969 .

[60]  O. Johnson FIELD‐ENHANCED CONDUCTIVITY IN TiO2 (RUTILE) , 1968 .

[61]  F. Argall Switching phenomena in titanium oxide thin films , 1968 .

[62]  J. Baukus,et al.  Electrical conductivity of nonstoichiometric rutile single crystals from 1000° to 1500°C , 1966 .

[63]  K. L. Chopra,et al.  Avalanche‐Induced Negative Resistance in Thin Oxide Films , 1965 .

[64]  S. Andersson,et al.  PHASE ANALYSIS STUDIES ON THE TITANIUM-OXYGEN SYSTEM , 1957 .