A lattice simulation of the migration of the BF4− ion in polythiophene and polypyrrole lattices

[1]  W. V. Gunsteren,et al.  Computer simulation of a polymer electrolyte: Lithium iodide in amorphous poly(ethylene oxide) , 1995 .

[2]  D. Morton-Blake,et al.  An Atomistic Investigation of Helical Polythiophene , 1995 .

[3]  D. Morton-Blake,et al.  A lattice simulation investigation of the migration of chloride ions in doped polypyrrole and polythiophene , 1995 .

[4]  D. Morton-Blake,et al.  Atomistic simulations of the structures of the pristine and doped lattices of polypyrrole and polythiophene , 1993 .

[5]  D. Morton-Blake,et al.  Host-Dopant Interactions in Ion-Doped Polymers , 1992 .

[6]  D. F. Evans,et al.  Scanning tunneling microscopy (STM) evidence of semicrystalline and helical conducting polymer structures , 1990 .

[7]  D. Morton-Blake,et al.  Atomistic simulation investigations of the structures of conducting polymers , 1990 .

[8]  D. F. Evans,et al.  Scanning tunneling microscopic imaging of electropolymerized, doped polypyrrole. Visual evidence of semicrystalline and helical nascent polymer growth , 1989 .

[9]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .

[10]  G. Tourillon,et al.  Morphology of conducting organic polymers: Polythiophene and poly(3‐methyl thiophene) , 1984 .

[11]  C. Catlow Static lattice simulation of structure and transport in superionic conductors , 1983 .

[12]  R. Murray,et al.  An Ion Gate Membrane: Electrochemical Control of Ion Permeability through a Membrane with an Embedded Electrode , 1982 .

[13]  R. James,et al.  Defect energetics inα-Al2O3and rutile TiO2 , 1982 .