A PDE based and interpolation-free framework for modeling the sifting process in a continuous domain
暂无分享,去创建一个
Radjesvarane Alexandre | Valérie Perrier | El-Hadji Samba Diop | V. Perrier | E. Diop | Radjesvarane Alexandre
[1] Yuesheng Xu,et al. Two-dimensional empirical mode decomposition by finite elements , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[2] Norden E. Huang,et al. Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..
[3] Sylvain Meignen,et al. A New Formulation for Empirical Mode Decomposition Based on Constrained Optimization , 2007, IEEE Signal Processing Letters.
[4] Boualem Boashash,et al. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference , 2015 .
[5] R. Sharpley,et al. Analysis of the Intrinsic Mode Functions , 2006 .
[6] Jean-Christophe Cexus,et al. Analyse des signaux non-stationnaires par transformation de Huang, Opérateur deTeager-Kaiser, et Transformation de Huang-Teager (THT). (Analysis of non-stationnary signals with Huang-Transform, Teager-Kaiser Operator, and Teager-Huang Transform (THT)) , 2005 .
[7] N. Huang,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[8] Radjesvarane Alexandre,et al. A PDE model for 2D intrinsic mode functions , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).
[9] Paulo Gonçalves,et al. Empirical Mode Decompositions as Data-Driven Wavelet-like Expansions , 2004, Int. J. Wavelets Multiresolution Inf. Process..
[10] I. Daubechies,et al. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .
[11] Grégoire Allaire,et al. Numerical analysis and optimization , 2007 .
[12] Gabriel Rilling,et al. Empirical mode decomposition as a filter bank , 2004, IEEE Signal Processing Letters.
[13] F. Salzenstein,et al. IF estimation using empirical mode decomposition and nonlinear Teager energy operator , 2004, First International Symposium on Control, Communications and Signal Processing, 2004..
[14] Radjesvarane Alexandre,et al. Analysis of Intrinsic Mode Functions: A PDE Approach , 2010, IEEE Signal Processing Letters.
[15] Robert C. Sharpley,et al. Decomposition of functions into pairs of intrinsic mode functions , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[16] Yuesheng Xu,et al. A B-spline approach for empirical mode decompositions , 2006, Adv. Comput. Math..
[17] Khaled H. Hamed,et al. Time-frequency analysis , 2003 .
[18] S. Benramdane,et al. Empirical Mode Decomposition and some operators to estimate Instantaneous Frequency: A comparative study , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.
[19] Weixian Liu,et al. A new approach for ground moving target indication in foliage environment , 2006, Signal Process..
[20] Abdel-Ouahab Boudraa,et al. Nonstationary signals analysis by Teager-Huang Transform (THT) , 2006, 2006 14th European Signal Processing Conference.
[21] Christophe Damerval,et al. A fast algorithm for bidimensional EMD , 2005, IEEE Signal Processing Letters.
[22] Zhaohua Wu,et al. A Variant of the EMD Method for Multi-Scale Data , 2009, Adv. Data Sci. Adapt. Anal..
[23] Gabriel Rilling,et al. Décompositions Modales Empiriques. Contributions à la théorie, l'algorithmie et l'analyse de performances , 2007 .
[24] Babak Hossein Khalaj,et al. Grey Prediction Based Handoff Algorithm , 2007 .
[25] H. H. Madden. Comments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data , 1976 .
[26] A. Savitzky,et al. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .
[27] Abdel-Ouahab Boudraa,et al. Time-Frequency Analysis of Pressure Fluctuations on a Hydrofoil Undergoing a Transient Pitching Motion Using Hilbert-Huang and Teager-Huang Transforms , 2007 .
[28] Jacques Lemoine,et al. Empirical mode decomposition: an analytical approach for sifting process , 2005, IEEE Signal Processing Letters.
[29] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[30] I. Osorio,et al. Intrinsic time-scale decomposition: time–frequency–energy analysis and real-time filtering of non-stationary signals , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[31] N. Huang,et al. A study of the characteristics of white noise using the empirical mode decomposition method , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[32] J. Rubinstein,et al. An Introduction to Partial Differential Equations , 2005 .
[33] Hualou Liang,et al. Empirical mode decomposition of field potentials from macaque V4 in visual spatial attention , 2005, Biological Cybernetics.
[34] Emmanuele DiBenedetto,et al. Partial differential equations , 1995 .
[35] J. C. Cexus,et al. Teager-Huang Analysis Applied to Sonar Target Recognition , 2007 .
[36] G. Folland. Introduction to Partial Differential Equations , 1976 .
[37] Jean Claude Nunes,et al. Image analysis by bidimensional empirical mode decomposition , 2003, Image Vis. Comput..
[38] Radjesvarane Alexandre,et al. Intrinsic nonlinear multiscale image decomposition: A 2D empirical mode decomposition-like tool , 2012, Comput. Vis. Image Underst..
[39] S. Rice. Mathematical analysis of random noise , 1944 .
[40] Groupe Asm. A PDE MODEL FOR 2D INTRINSIC MODE FUNCTIONS El Hadji S. Diop, R. Alexandre and A.-O. Boudraa , 2009 .