Exact smooth piecewise polynomial sequences on Alfeld splits

We develop exact piecewise polynomial sequences on Alfeld splits in any spatial dimension and any polynomial degree. An Alfeld split of a simplex is obtained by connecting the vertices of an $n$-simplex with its barycenter. We show that, on these triangulations, the kernel of the exterior derivative has enhanced smoothness. Byproducts of this theory include characterizations of discrete divergence-free subspaces for the Stokes problem, commutative projections, and simple formulas for the dimensions of smooth polynomial spaces.

[1]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[2]  Kaibo Hu,et al.  Generalized finite element systems for smooth differential forms and Stokes’ problem , 2016, Numerische Mathematik.

[3]  Tatyana Sorokina,et al.  Multivariate C^1-Continuous Splines on the Alfeld Split of a Simplex , 2014 .

[4]  Leo G. Rebholz,et al.  A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[5]  Martin Costabel,et al.  On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.

[6]  Jun Hu,et al.  Nodal finite element de Rham complexes , 2018, Numerische Mathematik.

[7]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[8]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[9]  Jinchao Xu,et al.  A nonconforming finite element method for fourth order curl equations in R3 , 2010, Math. Comput..

[10]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[11]  Peter Alfeld,et al.  A trivariate clough-tocher scheme for tetrahedral data , 1984, Comput. Aided Geom. Des..

[12]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[13]  Hal Schenck,et al.  Splines on the Alfeld split of a simplex and type A root systems , 2014, J. Approx. Theory.

[14]  Leo G. Rebholz,et al.  Application of barycenter refined meshes in linear elasticity and incompressible fluid dynamics , 2011 .

[15]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[16]  Leo G. Rebholz,et al.  On the convergence rate of grad-div stabilized Taylor–Hood to Scott–Vogelius solutions for incompressible flow problems , 2011 .

[17]  Douglas N. Arnold,et al.  Quadratic velocity/linear pressure Stokes elements , 1992 .

[18]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[19]  D. Arnold Finite Element Exterior Calculus , 2018 .

[20]  Michael Neilan,et al.  Discrete and conforming smooth de Rham complexes in three dimensions , 2015, Math. Comput..

[21]  Michael Neilan,et al.  Inf-Sup Stable Finite Elements on Barycentric Refinements Producing Divergence-Free Approximations in Arbitrary Dimensions , 2017, SIAM J. Numer. Anal..

[22]  Rolf Stenberg A nonstandard mixed finite element family , 2010, Numerische Mathematik.