Threading splines through 3D channels
暂无分享,去创建一个
[1] Robert P. Markot,et al. Surface algorithms using bounds on derivatives , 1986, Comput. Aided Geom. Des..
[2] Emo Welzl,et al. Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.
[3] James T. Kajiya,et al. Ray tracing complex scenes , 1986, SIGGRAPH.
[4] Jarek Rossignac,et al. Technical Section Tribox bounds for three-dimensional objects , 1999 .
[5] J. Sack,et al. Handbook of computational geometry , 2000 .
[6] Jon G. Rokne,et al. Geometric Computations with Interval and New Robust Methods: Applications in Computer Graphics, GIS and Computational Geometry , 2003 .
[7] Jarek Rossignac,et al. Tribox bounds for three-dimensional objects , 1999, Comput. Graph..
[8] Jörg Peters,et al. Envelopes of nonlinear geometry , 2000 .
[9] Dinesh Manocha,et al. OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.
[10] Jörg Peters,et al. Efficient One-Sided Linearization of Spline Geometry , 2003, IMA Conference on the Mathematics of Surfaces.
[11] Jörg Peters,et al. On the Optimality of Piecewise Linear Max-norm Enclosures based on Slefes , 2002 .
[12] Thomas W. Sederberg,et al. Fat arcs: A bounding region with cubic convergence , 1989, Comput. Aided Geom. Des..
[13] Jörg Peters,et al. SLEVEs for planar spline curves , 2004, Comput. Aided Geom. Des..
[14] Hans-Peter Seidel,et al. Ray Tracing of Subdivision Surfaces , 1998, Rendering Techniques.
[15] Joseph S. B. Mitchell,et al. Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..
[16] Jörg Peters,et al. Smooth paths in a polygonal channel , 1999, SCG '99.
[17] David P. Dobkin,et al. A path router for graph drawing , 1998, SCG '98.
[18] T. Sakkalis,et al. Pythagorean hodographs , 1990 .
[19] Roberto Tamassia. Graph Drawing , 2000, Handbook of Computational Geometry.