Clifford Wavelet Entropy for Fetal ECG Extraction

Analysis of the fetal heart rate during pregnancy is essential for monitoring the proper development of the fetus. Current fetal heart monitoring techniques lack the accuracy in fetal heart rate monitoring and features acquisition, resulting in diagnostic medical issues. The challenge lies in the extraction of the fetal ECG from the mother ECG during pregnancy. This approach has the advantage of being a reliable and non-invasive technique. In the present paper, a wavelet/multiwavelet method is proposed to perfectly extract the fetal ECG parameters from the abdominal mother ECG. In a first step, due to the wavelet/mutiwavelet processing, a denoising procedure is applied to separate the noised parts from the denoised ones. The denoised signal is assumed to be a mixture of both the MECG and the FECG. One of the well-known measures of accuracy in information processing is the concept of entropy. In the present work, a wavelet/multiwavelet Shannon-type entropy is constructed and applied to evaluate the order/disorder of the extracted FECG signal. The experimental results apply to a recent class of Clifford wavelets constructed in Arfaoui, et al. J. Math. Imaging Vis. 2020, 62, 73–97, and Arfaoui, et al. Acta Appl. Math. 2020, 170, 1–35. Additionally, classical Haar–Faber–Schauder wavelets are applied for the purpose of comparison. Two main well-known databases have been applied, the DAISY database and the CinC Challenge 2013 database. The achieved accuracy over the test databases resulted in Se = 100%, PPV = 100% for FECG extraction and peak detection.

[1]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[2]  Giovanna Citti,et al.  A Geometric Model of Multi-scale Orientation Preference Maps via Gabor Functions , 2017, Journal of Mathematical Imaging and Vision.

[3]  Pavel Jurák,et al.  Extracting the R-wave position from an FECG record using recognition of multi-channel shapes , 2013, Computing in Cardiology 2013.

[4]  Reza Sameni,et al.  Noninvasive fetal ECG: The PhysioNet/Computing in Cardiology Challenge 2013 , 2013, Computing in Cardiology 2013.

[5]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[6]  Radomir S. Stankovic,et al.  The Haar wavelet transform: its status and achievements , 2003, Comput. Electr. Eng..

[7]  J. Flusser,et al.  CHAPTER 7 2 D and 3 D Image Analysis by Gaussian Hermite Moments , 2014 .

[8]  Ratan Kumar Basak,et al.  Image Compression based on Block Truncation Coding Using Clifford Algebra , 2013 .

[9]  Vito Starc Non-invasive fetal multilead RR interval determination from maternal abdominal recordings: The Physionet/CinC Challenge 2013 , 2013, Computing in Cardiology 2013.

[10]  C. Cattani,et al.  On the fractal distribution of primes and prime-indexed primes by the binary image analysis , 2016 .

[11]  Kartik V. Bulusu,et al.  Shannon Entropy-Based Wavelet Transform Method for Autonomous Coherent Structure Identification in Fluid Flow Field Data , 2015, Entropy.

[12]  Jan Flusser,et al.  2D and 3D Image Analysis by Gaussian-Hermite Moments , 2014 .

[13]  Lianglun Cheng,et al.  Medical Image Segmentation of Blood Vessels Based on Clifford Algebra and Voronoi Diagram , 2018, J. Softw..

[14]  S. Mallat A wavelet tour of signal processing , 1998 .

[15]  Laurent D. Cohen,et al.  A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting , 1996, Comput. Vis. Image Underst..

[16]  K. I. Ramachandran,et al.  A Simplified Approach to Identify the Fetal ECG from abdECG and to Measure the fHR , 2015 .

[17]  Fred Brackx,et al.  Clifford-Hermite and two-dimensional Clifford-Gabor filters for early vision , 2006 .

[18]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[19]  Martin J. Mohlenkamp,et al.  A fast transform for spherical harmonics , 1997 .

[20]  Boris Escalante-Ramírez,et al.  The Hermite Transform: An Alternative Image Representation Model for Iris Recognition , 2008, CIARP.

[21]  Henggui Zhang,et al.  A multi-step method with signal quality assessment and fine-tuning procedure to locate maternal and fetal QRS complexes from abdominal ECG recordings , 2014, Physiological measurement.

[22]  Dorin Comaniciu,et al.  Patient-specific modeling of left heart anatomy, dynamics and hemodynamics from high resolution 4D CT , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[23]  Laurent D. Cohen,et al.  A Parametric Deformable Model to Fit Unstructured 3D Data , 1998, Comput. Vis. Image Underst..

[24]  Eran Sharon,et al.  Extraction of coherent structures in a rotating turbulent flow experiment. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Mohamed Ali Mahjoub,et al.  Toward recursive spherical harmonics issued bi-filters: Part II: an associated spherical harmonics entropy for optimal modeling , 2019, Soft Computing.

[26]  Christian Jutten,et al.  Fetal ECG Extraction by Extended State Kalman Filtering Based on Single-Channel Recordings , 2013, IEEE Transactions on Biomedical Engineering.

[27]  Marco Reisert,et al.  Spherical Tensor Algebra: A Toolkit for 3D Image Processing , 2017, Journal of Mathematical Imaging and Vision.

[28]  R. Modre-Osprian,et al.  A robust algorithm for fetal QRS detection using non-invasive maternal abdomenal ECGs , 2013, Computing in Cardiology 2013.

[29]  Christine Fernandez-Maloigne,et al.  Spatial color image processing using Clifford algebras: application to color active contour , 2014, Signal Image Video Process..

[30]  Dumitru Baleanu,et al.  Local Fractional Discrete Wavelet Transform for Solving Signals on Cantor Sets , 2013 .

[31]  Susana Hornillo-Mellado,et al.  Fast Technique for Noninvasive Fetal ECG Extraction , 2011, IEEE Transactions on Biomedical Engineering.

[32]  Li Su,et al.  Extract Fetal ECG from Single-Lead Abdominal ECG by De-Shape Short Time Fourier Transform and Nonlocal Median , 2016, Front. Appl. Math. Stat..

[33]  Algimantas Krisciukaitis,et al.  Multi stage Principal Component Analysis based method for detection of fetal heart beats in abdominal ECGs , 2013, Computing in Cardiology 2013.

[34]  Carlos Dias Maciel,et al.  Introduction to the Discrete Shapelet Transform and a new paradigm: Joint time-frequency-shape analysis , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[35]  Michael Felsberg,et al.  Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group , 2007, International Journal of Computer Vision.

[36]  Mohamed Ali Mahjoub,et al.  Toward recursive spherical harmonics-issued bi-filters: Part I: theoretical framework , 2018, Soft Computing.

[37]  Vaidotas Marozas,et al.  Noninvasive fetal QRS detection using Echo State Network , 2013, Computing in Cardiology 2013.

[38]  Julien Oster,et al.  Non-invasive FECG extraction from a set of abdominal sensors , 2013, Computing in Cardiology 2013.

[39]  Rully Soelaiman,et al.  MEDICAL IMAGE SEGMENTATION USING GENERALIZED GRADIENT VECTOR FLOW AND CLIFFORD GEOMETRIC ALGEBRA , 2008 .

[40]  Anne Robert Étude de la forme et du mouvement du coeur à partir de données lacunaires , 1996 .

[41]  Alejandro F. Frangi,et al.  Multichannel foetal heartbeat detection by combining source cancellation with expectation-weighted estimation of fiducial points , 2013, Computing in Cardiology 2013.

[42]  Reza Sameni,et al.  A robust framework for noninvasive extraction of fetal electrocardiogram signals , 2013, Computing in Cardiology 2013.

[43]  Jorge Mateu,et al.  2D Anisotropic Wavelet Entropy with an Application to Earthquakes in Chile , 2015, Entropy.

[44]  Roger Abächerli,et al.  Cancellation of the maternal and extraction of the fetal ECG in noninvasive recordings , 2013, Computing in Cardiology 2013.

[45]  Francesco Pappalardo,et al.  Persistence analysis in a Kolmogorov-type model for cancer-immune system competition , 2013 .

[46]  Limei Cheng,et al.  Spatial filtering and adaptive rule based fetal heart rate extraction from abdominal fetal ECG recordings , 2013, Computing in Cardiology 2013.

[47]  Mohamed Ali Mahjoub,et al.  Explicit Haar-Schauder multiwavelet filters and algorithms. Part II: Relative entropy-based estimation for optimal modeling of biomedical signals , 2019, Int. J. Wavelets Multiresolution Inf. Process..

[48]  J. Garvey,et al.  Cardiac Monitoring in the Emergency Department. , 2016, Critical care nursing clinics of North America.

[49]  Pierre Vandergheynst,et al.  Directional Wavelets Revisited: Cauchy Wavelets and Symmetry Detection in Patterns , 1999 .

[50]  Hartmut Dickhaus,et al.  Fetal QRS detection and RR interval measurement in noninvasively registered abdominal ECGs , 2013, Computing in Cardiology 2013.

[51]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[52]  M. Omair Ahmad,et al.  A New Statistical Detector for DWT-Based Additive Image Watermarking Using the Gauss–Hermite Expansion , 2009, IEEE Transactions on Image Processing.

[53]  Hagen Malberg,et al.  Robust fetal ECG extraction and detection from abdominal leads , 2014, Physiological measurement.

[54]  Asoke K. Nandi,et al.  Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation , 2001, IEEE Transactions on Biomedical Engineering.

[55]  Faouzi Ghorbel,et al.  Three dimensional modeling of the left ventricle of the heart using spherical harmonic analysis , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[56]  H. De Bie,et al.  On the Clifford-Fourier transform , 2010, 1003.0689.

[57]  Fred Brackx,et al.  The Two-Dimensional Clifford-Fourier Transform , 2006, Journal of Mathematical Imaging and Vision.

[58]  Yaniv Zigel,et al.  Noninvasive fetal QRS detection using a linear combination of abdomen ECG signals , 2013, Computing in Cardiology 2013.

[59]  Mohamed Ali Mahjoub,et al.  Toward new multi-wavelets: associated filters and algorithms. Part I: theoretical framework and investigation of biomedical signals, ECG, and coronavirus cases , 2021, Soft Computing.

[60]  C. Cattani Fractal similarities between the distribution of primes and nucleotides in DNA , 2020 .

[61]  Dumitru Baleanu,et al.  Wavelet Transforms and Their Recent Applications in Biology and Geoscience , 2012 .

[62]  Jürgen E Schneider,et al.  Assessment of global cardiac function. , 2011, Methods in molecular biology.

[63]  Mohammad B. Shamsollahi,et al.  Fetal electrocardiogram R-peak detection using robust tensor decomposition and extended Kalman filtering , 2013, Computing in Cardiology 2013.

[64]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[65]  Alberto Macerata,et al.  A multi-step approach for non-invasive fetal ECG analysis , 2013, Computing in Cardiology 2013.

[66]  C. Cattani,et al.  New Type of Gegenbauer-Jacobi-Hermite Monogenic Polynomials and Associated Continuous Clifford Wavelet Transform , 2020, Acta Applicandae Mathematicae.

[67]  Jean-Pierre Antoine,et al.  Two-dimensional directional wavelets in image processing , 1996, Int. J. Imaging Syst. Technol..

[68]  Moo K. Chung,et al.  Large-Scale Modeling of Parametric Surfaces Using Spherical Harmonics , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[69]  Hagen Malberg,et al.  Maternal signal estimation by Kalman filtering and Template Adaptation for fetal heart rate extraction , 2013, Computing in Cardiology 2013.

[70]  Peng Li,et al.  Systematic methods for fetal electrocardiographic analysis: Determining the fetal heart rate, RR interval and QT interval , 2013, Computing in Cardiology 2013.

[71]  Hassan Douzi,et al.  Faber-Schauder Wavelet Transform, Application to Edge Detection and Image Characterization , 2004, Journal of Mathematical Imaging and Vision.

[72]  Shannon , 2018, Approaches to Entropy.

[73]  Sabrine Arfaoui,et al.  New Type of Gegenbauer–Hermite Monogenic Polynomials and Associated Clifford Wavelets , 2019, Journal of Mathematical Imaging and Vision.

[74]  Dingchang Zheng,et al.  An algorithm for the analysis of fetal ECGs from 4-channel non-invasive abdominal recordings , 2013, Computing in Cardiology 2013.

[75]  David A. Borkholder,et al.  Fetal ECG extraction from abdominal recordings using array signal processing , 2013, Computing in Cardiology 2013.

[76]  Ali Ghaffari,et al.  PhysioNet/CinC challenge 2013: A novel noninvasive technique to recognize fetal QRS complexes from noninvasive fetal electrocardiogram signals , 2013, Computing in Cardiology 2013.

[77]  Hatem A. Fayed,et al.  A New Monte Carlo Based Algorithm for the Gaussian Process Classification Problem , 2013, 1302.7220.

[78]  On polynomials with interlacing zeros , 1985 .

[79]  Piotr Podziemski,et al.  Fetal heart rate discovery: Algorithm for detection of fetal heart rate from noisy, noninvasive fetal ECG recordings , 2013, Computing in Cardiology 2013.

[80]  Andrei N. Kolmogorov,et al.  On the Shannon theory of information transmission in the case of continuous signals , 1956, IRE Trans. Inf. Theory.

[81]  Fritz Keinert,et al.  Wavelets and Multiwavelets , 2003 .

[82]  Kostas Daniilidis,et al.  Direct 3D-rotation estimation from spherical images via a generalized shift theorem , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[83]  R. Strichartz Local harmonic analysis on spheres , 1988 .

[84]  Mika P. Tarvainen,et al.  Advanced maternal ECG removal and noise reduction for application of fetal QRS detection , 2013, Computing in Cardiology 2013.

[85]  Lenka Lhotská,et al.  Advanced signal processing techniques for fetal ECG analysis , 2013, Computing in Cardiology 2013.

[86]  Christian Jutten,et al.  Fetal QRS complex detection based on three-way tensor decomposition , 2013, Computing in Cardiology 2013.

[87]  Patrick Fischer,et al.  MULTIRESOLUTION ANALYSIS FOR 2D TURBULENCE. PART 1: WAVELETS VS COSINE PACKETS, A COMPARATIVE STUDY , 2005 .

[88]  John S. Duncan,et al.  Pointwise tracking of left-ventricular motion in 3D , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[89]  Hamid Abrishami Moghaddam,et al.  A Fully 3D System for Cardiac Wall Deformation Analysis in MRI Data , 2007, FIMH.

[90]  Carlo Cattani,et al.  A Review on Harmonic Wavelets and Their Fractional Extension , 2018, J. Adv. Eng. Comput..

[91]  James S. Duncan,et al.  Segmentation of the Left Ventricle From Cardiac MR Images Using a Subject-Specific Dynamical Model , 2010, IEEE Transactions on Medical Imaging.

[92]  Reza Sameni,et al.  Fetal QRS complex detection using semi-blind source separation framework , 2013, Computing in Cardiology 2013.

[93]  Alessandro Foi,et al.  Optimal Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising , 2011, IEEE Transactions on Image Processing.

[94]  Bart De Schutter,et al.  DAISY : A database for identification of systems , 1997 .

[95]  Ashish Khare,et al.  Fusion of multimodal medical images using Daubechies complex wavelet transform - A multiresolution approach , 2014, Inf. Fusion.

[96]  Carlo Cattani,et al.  Harmonic wavelet approximation of random, fractal and high frequency signals , 2010, Telecommun. Syst..

[97]  Rute Almeida,et al.  A wavelet-based method for assessing fetal cardiac rhythms from abdominal ECGs , 2013, Computing in Cardiology 2013.

[98]  Pablo Laguna,et al.  Noninvasive fetal ECG estimation based on linear transformations , 2013, Computing in Cardiology 2013.

[99]  Z. Luo,et al.  Design of Interpolating Biorthogonal Multiwavelet Systems with Compact Support , 2001 .

[100]  P. Carré,et al.  Color Representation and Processes with Clifford Algebra , 2013 .

[101]  Giovanni Jacovitti,et al.  On the Inter-Conversion Between Hermite and Laguerre Local Image Expansions , 2011, IEEE Transactions on Image Processing.

[102]  Boris Escalante-Ramírez,et al.  The Hermite transform as an efficient model for local image analysis: An application to medical image fusion , 2008, Comput. Electr. Eng..

[103]  E. Basar,et al.  Wavelet entropy: a new tool for analysis of short duration brain electrical signals , 2001, Journal of Neuroscience Methods.

[104]  Philippe Carré,et al.  Characterization of Color Images with Multiscale Monogenic Maxima , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  Aziz El Tatar Caractérisation et modélisation des potentiels induits par les commutations des gradients de champ magnétique sur les signaux électrophysiologiques en IRM , 2013 .