A new tabu search-based hyper-heuristic algorithm for solving construction leveling problems with limited resource availabilities

Abstract We present a tabu search-based hyper-heuristic algorithm for solving construction resource leveling problems, i.e. resource leveling under resource constraints with the prescribed maximum project duration to be equal or greater than the initial/minimum duration, as well as the related resource availability cost problem. The algorithm operates within a commercial project management software package by altering the priorities assigned to activities. The hyper-heuristic controls a set of low-level heuristics, which modify the priorities of selected activities by performing simple moves such as “replace” and “swap”. The most promising heuristics according to their efficiency are applied first, and a tabu list is used to prohibit heuristics with recently poor performance from being applied too soon. The application of the algorithm in three project cases showed that the proposed procedure is promising for handling resource optimization problems.

[1]  Georgios Ellinas,et al.  Minimum Moment Method for Resource Leveling Using Entropy Maximization , 2010 .

[2]  Sönke Hartmann,et al.  A survey of variants and extensions of the resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[3]  Erik Demeulemeester,et al.  A branch-and-bound procedure for the multiple resource-constrained project scheduling problem , 1992 .

[4]  Konstantinos P. Anagnostopoulos,et al.  A simulated annealing hyperheuristic for construction resource levelling , 2010 .

[5]  Rolf H. Möhring,et al.  Minimizing Costs of Resource Requirements in Project Networks Subject to a Fixed Completion Time , 1984, Oper. Res..

[6]  Shahram Shadrokh,et al.  Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm , 2008, Appl. Math. Comput..

[7]  Klaus Neumann,et al.  Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints , 2000, Eur. J. Oper. Res..

[8]  Georgios Ellinas,et al.  Entropy-based scheduling of resource-constrained construction projects , 2009 .

[9]  Alf Kimms,et al.  Optimization guided lower and upper bounds for the resource investment problem , 2001, J. Oper. Res. Soc..

[10]  Rinaldo Rinaldi,et al.  Optimal resource leveling using non-serial dyanamic programming , 1994 .

[11]  Sou-Sen Leu,et al.  Metaheuristics for project and construction management – A state-of-the-art review , 2011 .

[12]  Grzegorz Waligóra,et al.  Project scheduling with finite or infinite number of activity processing modes - A survey , 2011, Eur. J. Oper. Res..

[13]  Sanja Petrovic,et al.  A cooperative hyper-heuristic search framework , 2010, J. Heuristics.

[14]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[15]  Klaus Neumann,et al.  Resource levelling for projects with schedule-dependent time windows , 1999, Eur. J. Oper. Res..

[16]  Konstantinos P. Anagnostopoulos,et al.  Resource-Constrained Critical Path Scheduling by a GRASP-Based Hyperheuristic , 2012, J. Comput. Civ. Eng..

[17]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[18]  Edmund K. Burke,et al.  A simulated annealing based hyperheuristic for determining shipper sizes for storage and transportation , 2007, Eur. J. Oper. Res..

[19]  Miroslaw J. Skibniewski,et al.  Multiheuristic Approach for Resource Leveling Problem in Construction Engineering: Hybrid Approach , 1999 .

[20]  Sou-Sen Leu,et al.  RESOURCE LEVELING IN CONSTRUCTION BY GENETIC ALGORITHM-BASED OPTIMIZATION AND ITS DECISION SUPPORT SYSTEM APPLICATION , 2000 .

[21]  T. Warren Liao,et al.  Improved ant colony optimization algorithms for determining project critical paths , 2010 .

[22]  Vinícius Amaral Armentano,et al.  Scatter search for project scheduling with resource availability cost , 2006, Eur. J. Oper. Res..

[23]  Graham Kendall,et al.  An investigation of a tabu assisted hyper-heuristic genetic algorithm , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[24]  Robert B. Harris Packing Method for Resource Leveling (PACK) , 1990 .

[25]  Ahmed Senouci,et al.  Use of Genetic Algorithms in Resource Scheduling of Construction Projects , 2004 .

[26]  Symeon E. Christodoulou Construction imitating ants: Resource-unconstrained scheduling with artificial ants , 2009 .

[27]  Sávio B. Rodrigues,et al.  An exact algorithm for minimizing resource availability costs in project scheduling , 2010, Eur. J. Oper. Res..

[28]  Mohammed A. Salem Hiyassat Modification of Minimum Moment Approach in Resource Leveling , 2000 .

[29]  Shahram Shadrokh,et al.  A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty , 2007, Eur. J. Oper. Res..

[30]  Edmund K. Burke,et al.  Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems , 2009, J. Oper. Res. Soc..

[31]  Said M. Easa,et al.  Resource Leveling in Construction by Optimization , 1989 .

[32]  Erik Demeulemeester,et al.  Minimizing resource availability costs in time-limited project networks , 1995 .

[33]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[34]  Konstantinos P. Anagnostopoulos,et al.  A genetic hyperheuristic algorithm for the resource constrained project scheduling problem , 2010, IEEE Congress on Evolutionary Computation.

[35]  Konstantinos P. Anagnostopoulos,et al.  Construction Resource Allocation and Leveling Using a Threshold Accepting–Based Hyperheuristic Algorithm , 2012 .

[36]  Peter I. Cowling,et al.  Hyperheuristics: Recent Developments , 2008, Adaptive and Multilevel Metaheuristics.

[37]  Paul Fazio,et al.  Construction resource leveling using neural networks , 1996 .

[38]  Tarek Hegazy,et al.  Optimization of Resource Allocation and Leveling Using Genetic Algorithms , 1999 .

[39]  Peter I. Cowling,et al.  Using a Large Set of Low Level Heuristics in a Hyperheuristic Approach to Personnel Scheduling , 2007, Evolutionary Scheduling.

[40]  Shu-Shun Liu,et al.  Optimizing project selection and scheduling problems with time-dependent resource constraints , 2011 .

[41]  Robert H. Storer,et al.  Problem and Heuristic Space Search Strategies for Job Shop Scheduling , 1995, INFORMS J. Comput..