Potential and limitations of LiDAR altimetry in archaeological survey. Copper Age and Bronze Age settlements in southern Iberia

The archaeological use of images and data obtained through devices carried on mobile platforms (such as airplanes and satellites) is already one century old. Today, aerial photography and remote sensing are routinely used to capture, process and analyse archaeological evidence present on the surface of the earth, which is reflected in a large body of literature—see Bewley (1999), Corsi et al. (2013), Palmer and Cox (1993), Piccarreta and Ceraudo (2000), Riley (1987) and Wilson (1982) for the former and Campana and Forte (2001), Lasaponara and Masini (2012), Limp (1989), Lyons (1981), Wiseman and El-Baz (2007) and Wheatley and Gillings (2013), for the latter. In the last two decades, there has been a steady increase in the usage of altimetric analysis based on high-resolution techniques aimed at the detection of architectural elements both above ground and underground which are difficult to detect through conventional air photography and remote sensing methods. Prominent among those techniques is airborne laser scanning (ALS), which, like terrestrial laser scanning (TLS), allows for the detection and measurement of microtopographies with a level of precision not attainable with conventional techniques of surveying and photogrammetric restitution (Challis et al., 2008; Chase et al., 2010; Doneus & Briese, 2006; Doneus & Kühteiber, 2013; Fernandez-Diaz et al., 2014; Fontana, 2022; Gallagher & Josephs, 2008; Harmon et al., 2006; Opitz, 2013; Opitz & Cowley, 2013; Risbøl, 2010; Risbøl & Gustavsen, 2018). As is well-known, this technology uses active LiDAR (light detection and ranging) sensors which emit a beam of polarized infrared light which is discretized in pulses in order to measure the distance between the sensor and the scanned object by the time difference between the pulse emission and the reception of its reflection (time of flight, TOF). This offers a value of the relative position of the object with regards the sensor, which in turn must be converted in absolute terrestrial coordinates within a geodesic system through an accurate measurement of the position, altitude, orientation and sensor speed by means of a global navigation satellite system (GNSS) with differential correction and an inertial measurement unit (IMU). When LiDAR sensors are fixed on airplanes, decimetric levels of accuracy are achieved, which may turn centimetric on helicopters or drones. The final result is a three-dimensional scatter of points which may be treated through digital 3D-modelling applications to create precise altimetric models, using both the first returns to produce a digital surface model (DSM) or the ground returns (filtered) to produce a digital terrain model (DTM) (Opitz, 2013). The application of ALS technology to extensive archaeological reconnaissance is fairly recent. Over the last decade, LiDAR has proven extremely useful, particularly in densely forested regions of northern Europe, the American continent and Southeast Asia, although its usage in Mediterranean environments is still limited. After an initial phase of testing and calibration, highly innovative and even ground-breaking results have been achieved—see, for example, Barnes (2003), Doneus and Briese (2006), Doneus (2013), Harmon et al. (2006), Challis et al. (2008), Chase et al. (2010), Risbøl (2010), Crutchley (2013), Evans (2016), Canuto et al. (2018), Historic England (2018), Guyot et al. (2021), and Prümers et al. (2022). In Spain, public, freely accessible and updated altimetric data are issued periodically since 2014, which has fostered a variety of Received: 9 September 2021 Revised: 19 May 2022 Accepted: 2 June 2022

[1]  J. Iriarte,et al.  Lidar reveals pre-Hispanic low-density urbanism in the Bolivian Amazon , 2022, Nature.

[2]  G. Fontana,et al.  Italy’s Hidden Hillforts: A Large-Scale Lidar-Based Mapping of Samnium , 2022, Journal of Field Archaeology.

[3]  Felipe Lumbreras,et al.  Hybrid MSRM-Based Deep Learning and Multitemporal Sentinel 2-Based Machine Learning Algorithm Detects Near 10k Archaeological Tumuli in North-Western Iberia , 2021, Remote. Sens..

[4]  Benjamin Stular,et al.  Airborne LiDAR Point Cloud Processing for Archaeology. Pipeline and QGIS Toolbox , 2021, Remote. Sens..

[5]  Antonio Monterroso-Checa,et al.  Revealing Archaeological Sites under Mediterranean Forest Canopy Using LiDAR: El Viandar Castle (husum) in El Hoyo (Belmez-Córdoba, Spain) , 2021, Drones.

[6]  J. Fernandez-Diaz,et al.  Lidar survey of ancient Maya settlement in the Puuc region of Yucatan, Mexico , 2021, PloS one.

[7]  Alexandre Guyot,et al.  Combined Detection and Segmentation of Archeological Structures from LiDAR Data Using a Deep Learning Approach , 2021 .

[8]  Benjamin Štular,et al.  Documentation of Archaeology-Specific Workflow for Airborne LiDAR Data Processing , 2021, Geosciences.

[9]  César Parcero-Oubiña Habelos, hainos. Detección remota de indicios arqueolóxicos mediante fotografía aérea e Lidar en castros de Galicia , 2021, Cuadernos de Estudios Gallegos.

[10]  Antonio Monterroso Checa La ubicación del santuario de Melqart en Gadir: aportación de los datos PNOA-LiDAR , 2021 .

[11]  José Manuel Costa-García,et al.  Following the Roman Army between the Southern Foothills of the Cantabrian Mountains and the Northern Plains of Castile and León (North of Spain): Archaeological Applications of Remote Sensing and Geospatial Tools , 2020 .

[12]  William P. Megarry Review of Gillings et al (2020). 'Archaeological spatial analysis: A methodological guide' , 2020 .

[13]  Efstathios Adamopoulos,et al.  UAS-Based Archaeological Remote Sensing: Review, Meta-Analysis and State-of-the-Art , 2020 .

[14]  Wojtek Kowalczyk,et al.  Combining Deep Learning and Location-Based Ranking for Large-Scale Archaeological Prospection of LiDAR Data from The Netherlands , 2020, ISPRS Int. J. Geo Inf..

[15]  M. Doneus,et al.  Archaeological Ground Point Filtering of Airborne Laser Scan Derived Point-Clouds in a Difficult Mediterranean Environment , 2020, Journal of Computer Applications in Archaeology.

[16]  Piraye Hacıgüzeller,et al.  Archaeological Spatial Analysis , 2020 .

[17]  Juan Aurelio Pérez Macías,et al.  Notas sobre la Edad del Bronce en El Andévalo (Huelva, España) , 2019, digitAR - Revista Digital de Arqueologia, Arquitectura e Artes.

[18]  Enrique Cerrillo-Cuenca,et al.  Counting with the invisible record? The role of LiDAR in the interpretation of megalithic landscapes in south‐western Iberia (Extremadura, Alentejo and Beira Baixa) , 2019, Archaeological Prospection.

[19]  Antonio Monterroso-Checa Geoarchaeological Characterisation of Sites of Iberian and Roman Cordoba Using LiDAR Data Acquisitions , 2019, Geosciences.

[20]  Maja Somrak,et al.  Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping , 2019, Remote. Sens..

[21]  Ole Risbøl,et al.  LiDAR from drones employed for mapping archaeology – Potential, benefits and challenges , 2018 .

[22]  R. Shrestha,et al.  Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala , 2018, Science.

[23]  E. Symeonakis,et al.  Cartografía semi-automática de terrazas de cultivo a partir de datos LiDAR , 2018 .

[24]  Katharine M. Johnson,et al.  An observational and theoretical framework for interpreting the landscape palimpsest through airborne LiDAR , 2018 .

[25]  L. B. Rangel,et al.  Aplicaciones LiDAR a la topografía arqueológica: El Castro de Irueña (Fuenteguinaldo, Salamanca) , 2017 .

[26]  Miro Govedarica,et al.  3D Visualization of Urban Area Using Lidar Technology and CityGML , 2017 .

[27]  João Fonte,et al.  Hallazgos arqueológicos recientes para el estudio de la presencia militar romana en el oriente gallego , 2017 .

[28]  Žiga Kokalj,et al.  Airborne laser scanning raster data visualization , 2017 .

[29]  Enrique Cerrillo-Cuenca,et al.  An approach to the automatic surveying of prehistoric barrows through LiDAR , 2017 .

[30]  Antonio Monterroso-Checa Remote Sensing and Archaeology from Spanish LiDAR - PNOA: Identifying the Amphitheatre of the Roman City of Torreparedones (Córdoba - Andalucía - Spain ) , 2017 .

[31]  Damian H. Evans Airborne laser scanning as a method for exploring long-term socio-ecological dynamics in Cambodia , 2016 .

[32]  Nicole Fassbinder,et al.  Air Photography And Archaeology , 2016 .

[33]  Miguel Carrero-Pazos,et al.  La necrópolis del Monte de Santa Mariña revisitada: aportaciones del LIDAR aéreo para la cartografía megalítica de Galicia , 2015 .

[34]  Gonzalo Aranda Jiménez,et al.  The Archaeology of Bronze Age Iberia: Argaric Societies , 2014 .

[35]  William E. Carter,et al.  Now You See It... Now You Don't: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica , 2014, Remote. Sens..

[36]  R. Risch,et al.  The La Bastida fortification: new light and new questions on Early Bronze Age societies in the western Mediterranean , 2014, Antiquity.

[37]  L. G. Sanjuán,et al.  Social complexity in copper age southern Iberia (ca. 3200-2200 cal b.c.): Reviewing the 'state' hypothesis at Valencina de la Concepción (Seville, Spain) , 2013 .

[38]  Michael Doneus,et al.  Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models , 2013, Remote. Sens..

[39]  B. S. Tan,et al.  Uncovering archaeological landscapes at Angkor using lidar , 2013, Proceedings of the National Academy of Sciences.

[40]  Rachel Opitz An overview of airborne and terrestrial laser scanning in archaeology , 2013 .

[41]  S. Crutchley Using lidar data – drawing on 10 year’s experience at English Heritage , 2013 .

[42]  Frank Vermeulen,et al.  Good practice in archaeological diagnostics: non-invasive survey of complex archaeological sites , 2013 .

[43]  M. Doneus,et al.  Airborne laser scanning and archaeological interpretation - bringing back the people , 2013 .

[44]  D. Cowley,et al.  Interpreting archaeological topography : airborne laser scanning, 3D data and ground observation , 2013 .

[45]  B. Herrero Estructura territorial y estado en la cultura argárica , 2013 .

[46]  Frank Vermeulen,et al.  Good Practice in Archaeological Diagnostics , 2013 .

[47]  Dimitrij Mlekuz Vrhovnik Skin Deep: LiDAR and Good Practice of Landscape Archaeology , 2013 .

[48]  A. C. Sousa,et al.  Walls, gates and towers. Fortified settlements in the south and centre of Portugal: somes notes about violence and walls in the 3rd millenium bce , 2013 .

[49]  Rosa Lasaponara,et al.  Satellite Remote Sensing: A New Tool for Archaeology , 2012 .

[50]  Ross A. Hill,et al.  A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data , 2012 .

[51]  Arlen F. Chase,et al.  Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize , 2011 .

[52]  Víctor Hurtado Pérez,et al.  El marco territorial de El Trastejón en el contexto de las estrategias de asentamiento en la Edad del Bronce de Sierra Morena Occidental , 2011 .

[53]  Víctor Hurtado Pérez,et al.  El asentamiento de la Papua II , 2011 .

[54]  Rui Mataloto,et al.  Entre vivos e mortos nos IV e III milénios a.n.e. do Sul de Portugal: um balanço relativo do povoamento com base em datações pelo radiocarbono , 2009 .

[55]  D. Asensio,et al.  Puertas fortificadas del Mediterráneo: orígenes y evolución , 2009 .

[56]  Keith Challis,et al.  Airborne lidar and historic environment records , 2008, Antiquity.

[57]  Julie M. Gallagher,et al.  Using LiDAR to detect cultural resources in a forested environment: an example from Isle Royale National Park, Michigan, USA , 2008 .

[58]  M. D. Fernández-Posse Las comunidades agrarias de la Edad del Bronce en La Mancha oriental: (Albacete) , 2008 .

[59]  Eduardo Romero Bomba,et al.  El Asentamiento Fortificado del Cerro del Almendro (Santa Olalla del Cala, Huelva) , 2008 .

[60]  F. El-Baz,et al.  Remote sensing in archaeology , 2007 .

[61]  Michael Doneus,et al.  Digital Terrain Modelling for Archaeological Interpretation within Forested Areas using Full-Waveform Laserscanning , 2006, VAST.

[62]  S. Prince,et al.  LiDAR for Archaeological Landscape Analysis: A Case Study of Two Eighteenth-Century Maryland Plantation Sites , 2006, American Antiquity.

[63]  V. Hurtado EL ASENTAMIENTO FORTIFICADO DE SAN BLAS (CHELES, BADAJOZ). III MILENIO AC. , 2004 .

[64]  J. A. Serrano,et al.  Urbanismo y fortificaciones en la cultura de El Argar: homogeneidad y patrones regionales , 2004 .

[65]  F. Hervás,et al.  La Península Ibérica en el II milenio A. C. : poblados y fortificaciones , 2004 .

[66]  Ian Barnes,et al.  Aerial remote‐sensing techniques used in the management of archaeological monuments on the British Army's Salisbury Plain Training Area, Wiltshire, UK , 2003 .

[67]  S. Jorge Revisiting some earlier papers on the late prehistoric walled enclosures of the Iberian Peninsula , 2003 .

[68]  Mark Gillings,et al.  Spatial Technology and Archaeology: The Archaeological Applications of GIS , 2002 .

[69]  Vince Gaffney,et al.  Archiving Aerial Photography and Remote Sensing Data : a Guide to Good Practice , 1998 .

[70]  Arturo Ruiz Tadoada Asentamiento y subsistencia en La Mancha durante la Edad del Bronce : El sector noroccidental como modelo , 1997 .

[71]  J. Cardoso Génese, apogeu e declínio das fortificações calcolíticas da Extremadura , 1997 .

[72]  B. Oliver,et al.  Los poblados de la cultura del Bronce valenciano: Modelo tradicional y nuevas excavaciones , 1995 .

[73]  F. J. J. Maestre,et al.  El poblamiento durante el II milenio a. C. en Villena (Alicante) , 1995 .

[74]  T. Champion Emerging Complexity. The Later Prehistory of South-east Spain, Iberia and the West Mediterranean , 1991 .

[75]  J. Thornes,et al.  Land use and prehistory in south-east Spain , 1984 .

[76]  A. Stephenson,et al.  Air Photo Interpretation for Archaeologists , 1984 .

[77]  S. Morain,et al.  Remote Sensing - Multispectral Analyses of Cultural Resources: Chaco Canyon and Bandelier National Monument , 1981 .

[78]  Luis de Hoyos Sainz Las razas de las primeras edades del metal en el Sudeste de España , 1947 .