Image inversion and uncertainty quantification for constitutive laws of pattern formation

Abstract The forward problems of pattern formation have been greatly empowered by extensive theoretical studies and simulations, however, the inverse problem is less well understood. It remains unclear how accurately one can use images of pattern formation to learn the functional forms of the nonlinear and nonlocal constitutive relations in the governing equation. We use PDE-constrained optimization to infer the governing dynamics and constitutive relations and use Bayesian inference and linearization to quantify their uncertainties in different systems, operating conditions, and imaging conditions. We discuss the conditions to reduce the uncertainty of the inferred functions and the correlation between them, such as state-dependent free energy and reaction kinetics (or diffusivity). We present the inversion algorithm and illustrate its robustness and uncertainties under limited spatiotemporal resolution, unknown boundary conditions, blurry initial conditions, and other non-ideal situations. Under certain situations, prior physical knowledge can be included to constrain the result. Phase-field, reaction-diffusion, and phase-field-crystal models are used as model systems. The approach developed here can find applications in inferring unknown physical properties of complex pattern-forming systems and in guiding their experimental design.

[1]  Saif M. Mohammad,et al.  Big , 2019, Proceedings of the 2019 Conference of the North.

[2]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[3]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[4]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[5]  Kristen A. Severson,et al.  Data-driven prediction of battery cycle life before capacity degradation , 2019, Nature Energy.

[6]  S. Bennani,et al.  Comparison of Surrogate-Based Uncertainty Quantification Methods for Computationally Expensive Simulators , 2015, SIAM/ASA J. Uncertain. Quantification.

[7]  Bartosz Protas,et al.  Optimal reconstruction of material properties in complex multiphysics phenomena , 2013, J. Comput. Phys..

[8]  Theory of phase-ordering kinetics , 2002 .

[9]  N. Provatas,et al.  Free energy functionals for efficient phase field crystal modeling of structural phase transformations. , 2010, Physical review letters.

[10]  R. Fletcher Practical Methods of Optimization , 1988 .

[11]  Chao Ma,et al.  Uniformly accurate machine learning-based hydrodynamic models for kinetic equations , 2019, Proceedings of the National Academy of Sciences.

[12]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[13]  R. Fletcher,et al.  Practical Methods of Optimization: Fletcher/Practical Methods of Optimization , 2000 .

[14]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[15]  W. Deen Analysis Of Transport Phenomena , 1998 .

[16]  M. Bazant Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis. , 2017, Faraday discussions.

[17]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[18]  Ioannis G. Kevrekidis,et al.  Equation-free: The computer-aided analysis of complex multiscale systems , 2004 .

[19]  Tiangang Cui,et al.  Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..

[20]  N. Yoshinaga,et al.  Bayesian Modelling of Pattern Formation from One Snapshot of Pattern , 2020, 2006.06125.

[21]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[22]  Max Tegmark,et al.  AI Feynman: A physics-inspired method for symbolic regression , 2019, Science Advances.

[23]  Ilias Bilionis,et al.  Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification , 2018, J. Comput. Phys..

[24]  Luca Scarpa,et al.  Parameter identification for nonlocal phase field models for tumor growth via optimal control and asymptotic analysis , 2020, Mathematical Models and Methods in Applied Sciences.

[25]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[26]  T. Ala‐Nissila,et al.  Thermodynamics of bcc metals in phase-field-crystal models. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  H. Meidani,et al.  Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: Theory , 2018, Nuclear Engineering and Design.

[28]  Francisco Chinesta,et al.  Data-driven non-linear elasticity: constitutive manifold construction and problem discretization , 2017 .

[29]  George E. Karniadakis,et al.  Hidden physics models: Machine learning of nonlinear partial differential equations , 2017, J. Comput. Phys..

[30]  Christian Kahle,et al.  Bayesian Parameter Identification in Cahn-Hilliard Models for Biological Growth , 2018, SIAM/ASA J. Uncertain. Quantification.

[31]  H. Löwen,et al.  Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview , 2012, 1207.0257.

[32]  Liang Yan,et al.  Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems , 2018, J. Comput. Phys..

[33]  Chaomei Chen,et al.  Big, Deep, and Smart Data in Scanning Probe Microscopy. , 2016, ACS nano.

[34]  R. Braatz,et al.  Learning the Physics of Pattern Formation from Images. , 2020, Physical review letters.

[35]  Xun Huan,et al.  Variational system identification of the partial differential equations governing the physics of pattern-formation: Inference under varying fidelity and noise , 2018, Computer Methods in Applied Mechanics and Engineering.

[36]  L. Petzold,et al.  Numerical methods and software for sensitivity analysis of differential-algebraic systems , 1986 .

[37]  J. Méricq,et al.  Modeling phase inversion using Cahn-Hilliard equations – Influence of the mobility on the pattern formation dynamics , 2017 .

[38]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[39]  Paris Perdikaris,et al.  Learning Parameters and Constitutive Relationships with Physics Informed Deep Neural Networks , 2018, 1808.03398.

[40]  白井 光雲,et al.  現代の熱力学 = Modern thermodynamics , 2011 .

[41]  Shigeru Kondo,et al.  Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation , 2010, Science.

[42]  Olga Wodo,et al.  Entropy-Isomap: Manifold Learning for High-dimensional Dynamic Processes , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[43]  Christian J. Cyron,et al.  Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning , 2020, J. Comput. Phys..

[44]  Jürgen Kurths,et al.  Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.

[45]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[46]  Jaideep Pathak,et al.  Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. , 2018, Physical review letters.

[47]  Yiyang Li,et al.  Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. , 2014, Nature materials.

[48]  Nikolaus A. Adams,et al.  A weakly compressible SPH method with WENO reconstruction , 2019, J. Comput. Phys..

[49]  Bartosz Protas,et al.  Bayesian uncertainty quantification in inverse modeling of electrochemical systems , 2018, J. Comput. Chem..

[50]  Paris Perdikaris,et al.  A comparative study of physics-informed neural network models for learning unknown dynamics and constitutive relations , 2019, ArXiv.

[51]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[52]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[53]  Markus Bär,et al.  Fluid dynamics of bacterial turbulence. , 2013, Physical review letters.

[54]  Roy D. Welch,et al.  Self-Driven Phase Transitions Drive Myxococcus xanthus Fruiting Body Formation. , 2017, Physical review letters.

[55]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[56]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[57]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[58]  W. Ko,et al.  Discerning models of phase transformations in porous graphite electrodes: Insights from inverse modelling based on MRI measurements , 2020 .

[59]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[60]  Charbel Farhat,et al.  Learning constitutive relations from indirect observations using deep neural networks , 2020, J. Comput. Phys..

[61]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[62]  K. Blaum,et al.  g Factor of lithiumlike silicon 28Si11+. , 2013, Physical review letters.

[63]  Marta D'Elia,et al.  Data-driven Learning of Nonlocal Models: from high-fidelity simulations to constitutive laws , 2020, AAAI Spring Symposium: MLPS.

[64]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[65]  Shengtai Li,et al.  Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution , 2002, SIAM J. Sci. Comput..

[66]  L. Petzold,et al.  Adjoint sensitivity analysis for differential-algebraic equations: algorithms and software☆ , 2002 .

[67]  Olga Wodo,et al.  Learning Manifolds from Dynamic Process Data , 2020, Algorithms.

[68]  Sergei V. Kalinin,et al.  Statistical learning of governing equations of dynamics from in-situ electron microscopy imaging data , 2020 .

[69]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[70]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[71]  C. Brangwynne,et al.  RNA transcription modulates phase transition-driven nuclear body assembly , 2015, Proceedings of the National Academy of Sciences.

[72]  M. Fiebig,et al.  Reverse and forward engineering of Drosophila corneal nanocoatings , 2020, Nature.

[73]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[74]  Trenton Kirchdoerfer,et al.  Data-driven computational mechanics , 2015, 1510.04232.

[75]  G. Goward,et al.  Accurate Characterization of Ion Transport Properties in Binary Symmetric Electrolytes Using In Situ NMR Imaging and Inverse Modeling. , 2015, The journal of physical chemistry. B.

[76]  M. Bazant,et al.  Population dynamics of driven autocatalytic reactive mixtures. , 2019, Physical review. E.

[77]  Solon P. Pissis,et al.  Efficient Data Structures for Range Shortest Unique Substring Queries , 2020, Algorithms.

[78]  Suryanarayana Maddu,et al.  Stability selection enables robust learning of partial differential equations from limited noisy data , 2019, ArXiv.

[79]  Bin Dong,et al.  PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network , 2018, J. Comput. Phys..

[80]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[81]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[82]  J. Tinsley Oden,et al.  Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth , 2012, Journal of Mathematical Biology.

[83]  T. Gao,et al.  A scaling law to determine phase morphologies during ion intercalation , 2020, Energy & Environmental Science.

[84]  T. Nishi,et al.  Thermally Induced Phase Separation Behavior of Compatible Polymer Mixtures , 1975 .

[85]  Steven L. Brunton,et al.  Data-driven discovery of partial differential equations , 2016, Science Advances.

[86]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[87]  A. Turing The chemical basis of morphogenesis , 1990 .

[88]  George Em Karniadakis,et al.  Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations , 2020, Science.

[89]  H. H. Wensink,et al.  Meso-scale turbulence in living fluids , 2012, Proceedings of the National Academy of Sciences.

[90]  Sergei V. Kalinin,et al.  Big-deep-smart data in imaging for guiding materials design. , 2015, Nature materials.

[91]  Hiroshi Furukawa,et al.  A dynamic scaling assumption for phase separation , 1985 .

[92]  Tao Zhou,et al.  An adaptive surrogate modeling based on deep neural networks for large-scale Bayesian inverse problems , 2019, ArXiv.

[93]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[94]  Eric Darve,et al.  Learning Constitutive Relations using Symmetric Positive Definite Neural Networks , 2020, J. Comput. Phys..

[95]  Sergei V. Kalinin,et al.  Exploring mesoscopic physics of vacancy-ordered systems through atomic scale observations of topological defects. , 2012, Physical review letters.

[96]  Paris Perdikaris,et al.  Adversarial Uncertainty Quantification in Physics-Informed Neural Networks , 2018, J. Comput. Phys..

[97]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[98]  Jason Yosinski,et al.  Hamiltonian Neural Networks , 2019, NeurIPS.

[99]  B. Protas,et al.  On Optimal Reconstruction of Constitutive Relations , 2011 .

[100]  Miles Cranmer,et al.  Lagrangian Neural Networks , 2020, ICLR 2020.