One species, different diseases: the unique molecular mechanisms that underlie the pathogenesis of typhoidal Salmonella infections.

[1]  B. Lepenies,et al.  The Vi Capsular Polysaccharide of Salmonella Typhi Promotes Macrophage Phagocytosis by Binding the Human C-Type Lectin DC-SIGN , 2022, mBio.

[2]  Vyshakh Rajachandran,et al.  Distinct Potentially Adaptive Accumulation of Truncation Mutations in Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A , 2022, Microbiology spectrum.

[3]  J. Crump,et al.  Complications and mortality of non-typhoidal salmonella invasive disease: a global systematic review and meta-analysis , 2022, The Lancet. Infectious diseases.

[4]  M. Levine,et al.  Point-of-Care Ultrasound by Nonexpert Operators Demonstrates High Sensitivity and Specificity in Detecting Gallstones: Data from the Samoa Typhoid Fever Control Program , 2022, The American journal of tropical medicine and hygiene.

[5]  I. Bogoch,et al.  Incidence of Typhoid and Paratyphoid Fever in Bangladesh, Nepal, and Pakistan: Results of the Surveillance for Enteric Fever in Asia Project , 2021, SSRN Electronic Journal.

[6]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[7]  OUP accepted manuscript , 2022, Clinical Infectious Diseases.

[8]  N. Thomson,et al.  The evolutionary history of Shigella flexneri serotype 6 in Asia , 2021, Microbial genomics.

[9]  Sunny Shin,et al.  Human NAIP/NLRC4 and NLRP3 inflammasomes detect Salmonella type III secretion system activities to restrict intracellular bacterial replication , 2021, bioRxiv.

[10]  Lei Wang,et al.  Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence , 2021, Nature Communications.

[11]  S. Spanò,et al.  The Rab32/BLOC-3–dependent pathway mediates host defense against different pathogens in human macrophages , 2019, Science Advances.

[12]  OUP accepted manuscript , 2021, The Journal of Infectious Diseases.

[13]  S. Baker,et al.  Very long O‐antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death , 2020, Cellular microbiology.

[14]  T. Meyer,et al.  Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells , 2020, mBio.

[15]  D. Monack,et al.  Salmonella-Driven Polarization of Granuloma Macrophages Antagonizes TNF-Mediated Pathogen Restriction during Persistent Infection. , 2019, Cell host & microbe.

[16]  D. Monack,et al.  Salmonella Effector SteE Converts the Mammalian Serine/Threonine Kinase GSK3 into a Tyrosine Kinase to Direct Macrophage Polarization , 2019, Cell host & microbe.

[17]  F. Fang,et al.  Genome-wide Analysis of Salmonellaenterica serovar Typhi in Humanized Mice Reveals Key Virulence Features. , 2019, Cell host & microbe.

[18]  Yang Wang,et al.  Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network , 2019, Front. Cell. Infect. Microbiol..

[19]  G. Dougan,et al.  Investigation of the role of typhoid toxin in acute typhoid fever in a human challenge model , 2019, Nature Medicine.

[20]  M. A. McDowell,et al.  The S. Typhi effector StoD is an E3/E4 ubiquitin ligase which binds K48- and K63-linked diubiquitin , 2019, Life Science Alliance.

[21]  J. Gunn,et al.  Structural variants of Salmonella Typhimurium lipopolysaccharide induce less dimerization of TLR4/MD-2 and reduced pro-inflammatory cytokine production in human monocytes. , 2019, Molecular immunology.

[22]  Dmitri I. Kotov,et al.  Salmonella Persist in Activated Macrophages in T Cell‐Sparse Granulomas but Are Contained by Surrounding CXCR3 Ligand‐Positioned Th1 Cells , 2018, Immunity.

[23]  E. Mylona,et al.  Typhoidal Salmonella: Distinctive virulence factors and pathogenesis , 2018, Cellular microbiology.

[24]  S. Nair,et al.  Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins , 2018, mBio.

[25]  Denise N. Bronner,et al.  Genetic Ablation of Butyrate Utilization Attenuates Gastrointestinal Salmonella Disease. , 2018, Cell host & microbe.

[26]  G. Dougan,et al.  Comparison of Salmonella enterica Serovars Typhi and Typhimurium Reveals Typhoidal Serovar-Specific Responses to Bile , 2017, Infection and Immunity.

[27]  S. Baker,et al.  Current perspectives on invasive nontyphoidal Salmonella disease , 2017, Current opinion in infectious diseases.

[28]  E. D. Di Domenico,et al.  Biofilm Producing Salmonella Typhi: Chronic Colonization and Development of Gallbladder Cancer , 2017, International journal of molecular sciences.

[29]  Dennis C. Ko,et al.  Human genetic variation in VAC14 regulates Salmonella invasion and typhoid fever through modulation of cholesterol , 2017, Proceedings of the National Academy of Sciences.

[30]  David W Holden,et al.  Salmonella SPI-2 Type III Secretion System Effectors: Molecular Mechanisms And Physiological Consequences. , 2017, Cell host & microbe.

[31]  B. Finlay,et al.  What the SIF Is Happening—The Role of Intracellular Salmonella-Induced Filaments , 2017, Front. Cell. Infect. Microbiol..

[32]  D. Bouley,et al.  Pseudogenization of the Secreted Effector Gene sseI Confers Rapid Systemic Dissemination of S. Typhimurium ST313 within Migratory Dendritic Cells. , 2017, Cell host & microbe.

[33]  C. MacLennan,et al.  A Systematic Review of the Incidence, Risk Factors and Case Fatality Rates of Invasive Nontyphoidal Salmonella (iNTS) Disease in Africa (1966 to 2014) , 2017, PLoS neglected tropical diseases.

[34]  G. Dougan,et al.  The Type III Secretion System Effector SptP of Salmonella enterica Serovar Typhi , 2016, Journal of bacteriology.

[35]  Leon N. Schulte,et al.  Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella , 2016, Nature Microbiology.

[36]  Mei Liu,et al.  Salmonella Effectors SseF and SseG Interact with Mammalian Protein ACBD3 (GCP60) To Anchor Salmonella-Containing Vacuoles at the Golgi Network , 2016, mBio.

[37]  C. Cañestro,et al.  Evolution by gene loss , 2016, Nature Reviews Genetics.

[38]  C. Consolandi,et al.  The Typhoid Toxin Promotes Host Survival and the Establishment of a Persistent Asymptomatic Infection , 2016, PLoS pathogens.

[39]  G. Dougan,et al.  A novel ciprofloxacin-resistant subclade of H58 Salmonella Typhi is associated with fluoroquinolone treatment failure , 2016, eLife.

[40]  Cara L. Wilhelm,et al.  Absence of TLR11 in Mice Does Not Confer Susceptibility to Salmonella Typhi , 2016, Cell.

[41]  C. Mao,et al.  An association of VNTR polymorphism in intron3 of IL-4 gene with susceptibility to typhoid fever in Khartoum State, Sudan , 2016 .

[42]  S. Baker,et al.  Typhoid carriage in the gallbladder , 2015, The Lancet.

[43]  Sky W. Brubaker,et al.  Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin , 2015, The Journal of Immunology.

[44]  D. Paredes-Sabja,et al.  Pseudogenization of sopA and sopE2 is functionally linked and contributes to virulence of Salmonella enterica serovar Typhi. , 2015, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[45]  S. Winter,et al.  The Flagellar Regulator TviA Reduces Pyroptosis by Salmonella enterica Serovar Typhi , 2015, Infection and Immunity.

[46]  K. Gopalakrishna,et al.  A Case of Typhoid Fever with Hepatic Granulomas and Enteritis , 2015, Case reports in pathology.

[47]  G. Dougan,et al.  Advance Access Publication Date: 24 December 2014 Short Communication Non-typhoidal Salmonella Typhimurium St313 Isolates That Cause Bacteremia in Humans Stimulate Less Inflammasome Activation than St19 Isolates Associated with Gastroenteritis , 2022 .

[48]  N. P. H. Lan,et al.  Variation at HLA-DRB1 is associated with resistance to enteric fever , 2014, Nature Genetics.

[49]  Gordon Dougan,et al.  Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. , 2014, Annual review of microbiology.

[50]  S. Spanò Host restriction in Salmonella: insights from Rab GTPases , 2014, Cellular microbiology.

[51]  Taro Kawai,et al.  Toll-Like Receptor Signaling Pathways , 2014, Front. Immunol..

[52]  G. Grassl,et al.  Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ , 2014, Front. Microbiol..

[53]  David W. Holden,et al.  Internalization of Salmonella by Macrophages Induces Formation of Nonreplicating Persisters , 2014, Science.

[54]  A. Chawla,et al.  Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence. , 2013, Cell host & microbe.

[55]  F. Shao,et al.  Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation , 2013, Proceedings of the National Academy of Sciences.

[56]  A. Bäumler,et al.  Loss of Very-Long O-Antigen Chains Optimizes Capsule-Mediated Immune Evasion by Salmonella enterica Serovar Typhi , 2013, mBio.

[57]  J. Galán,et al.  Structure and function of the Salmonella Typhi chimaeric A2B5 typhoid toxin , 2013, Nature.

[58]  Peter L. Freddolino,et al.  Bacterial Adaptation through Loss of Function , 2013, PLoS genetics.

[59]  D. Holden,et al.  Identification of Salmonella Pathogenicity Island-2 Type III Secretion System Effectors Involved in Intramacrophage Replication of S. enterica Serovar Typhimurium: Implications for Rational Vaccine Design , 2013, mBio.

[60]  F. Ramos-Morales Impact of Salmonella enterica Type III Secretion System Effectors on the Eukaryotic Host Cell , 2012 .

[61]  S. Spanò,et al.  A Rab32-Dependent Pathway Contributes to Salmonella Typhi Host Restriction , 2012, Science.

[62]  S. Ghosh,et al.  A Mouse Model of Salmonella Typhi Infection , 2012, Cell.

[63]  M. McClelland,et al.  Selection of Salmonella enterica Serovar Typhi Genes Involved during Interaction with Human Macrophages by Screening of a Transposon Mutant Library , 2012, PloS one.

[64]  J. Suez,et al.  Molecular and Cellular Characterization of a Salmonella enterica Serovar Paratyphi A Outbreak Strain and the Human Immune Response to Infection , 2011, Clinical and Vaccine Immunology.

[65]  M. Arifuzzaman,et al.  Interferon-γ and Proliferation Responses to Salmonella enterica Serotype Typhi Proteins in Patients with S. Typhi Bacteremia in Dhaka, Bangladesh , 2011, PLoS neglected tropical diseases.

[66]  J. Gunn,et al.  Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state , 2011, Nature Reviews Microbiology.

[67]  V. Sintchenko,et al.  Insight into evolution of Bordetella pertussis from comparative genomic analysis: evidence of vaccine-driven selection. , 2011, Molecular biology and evolution.

[68]  G. Mora,et al.  S. Typhimurium sseJ gene decreases the S. Typhi cytotoxicity toward cultured epithelial cells , 2010, BMC Microbiology.

[69]  F. Daigle,et al.  Intracellular survival of Salmonella enterica serovar Typhi in human macrophages is independent of Salmonella pathogenicity island (SPI)-2. , 2010, Microbiology.

[70]  S. Winter,et al.  The Vi Capsular Polysaccharide Prevents Complement Receptor 3-Mediated Clearance of Salmonella enterica Serotype Typhi , 2010, Infection and Immunity.

[71]  R. Heyderman,et al.  Typhoid Fever and Invasive Nontyphoid Salmonellosis, Malawi and South Africa , 2010, Emerging infectious diseases.

[72]  R. Vossen,et al.  Distribution of CFTR variations in an Indonesian enteric fever cohort. , 2010, Clinical Infectious Diseases.

[73]  Jean-Mathieu Leclerc,et al.  So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. , 2010, FEMS microbiology letters.

[74]  S. Winter,et al.  The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity , 2009, Molecular microbiology.

[75]  J. T. Anim,et al.  Granulomatous Inflammatory Response in a Case of Typhoid Fever , 2009, Medical Principles and Practice.

[76]  J. Farrar,et al.  Toll-Like Receptor 4 (TLR4) and Typhoid Fever in Vietnam , 2009, PloS one.

[77]  Julian Parkhill,et al.  Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi , 2009, BMC Genomics.

[78]  M. Gordon Salmonella infections in immunocompromised adults. , 2008, The Journal of infection.

[79]  S. Winter,et al.  The Vi‐capsule prevents Toll‐like receptor 4 recognition of Salmonella , 2008, Cellular microbiology.

[80]  S. Spanò,et al.  Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment. , 2008, Cell host & microbe.

[81]  B. Finlay,et al.  Type III Secretion Systems and Disease , 2007, Clinical Microbiology Reviews.

[82]  Eduardo P C Rocha,et al.  Reconstructing the ancestor of Mycobacterium leprae: the dynamics of gene loss and genome reduction. , 2007, Genome research.

[83]  Rosanna Lagos,et al.  Ty21a live oral typhoid vaccine and prevention of paratyphoid fever caused by Salmonella enterica Serovar Paratyphi B. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[84]  E. Slagboom,et al.  Polymorphisms in proinflammatory genes and susceptibility to typhoid fever and paratyphoid fever. , 2007, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[85]  A. Maurelli Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. , 2007, FEMS microbiology letters.

[86]  T. Steiner How Flagellin and Toll-Like Receptor 5 Contribute to Enteric Infection , 2006, Infection and Immunity.

[87]  A. Zychlinsky,et al.  Caspase-1-Mediated Activation of Interleukin-1β (IL-1β) and IL-18 Contributes to Innate Immune Defenses against Salmonella enterica Serovar Typhimurium Infection , 2006, Infection and Immunity.

[88]  J. V. van Dissel,et al.  PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever , 2006, Clinical and experimental immunology.

[89]  J. Wain,et al.  Salmonella Paratyphi A Rates, Asia , 2005, Emerging infectious diseases.

[90]  H. Andrews-Polymenis,et al.  CsgA is a pathogen‐associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll‐like receptor 2 , 2005, Molecular microbiology.

[91]  Rekha R Meyer,et al.  Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid , 2004, Nature Genetics.

[92]  Richard A. Moore,et al.  Contribution of Gene Loss to the Pathogenic Evolution of Burkholderia pseudomallei and Burkholderia mallei , 2004, Infection and Immunity.

[93]  A. Mert,et al.  Typhoid fever as a rare cause of hepatic, splenic, and bone marrow granulomas. , 2004, Internal medicine.

[94]  J. Crump,et al.  The global burden of typhoid fever. , 2004, Bulletin of the World Health Organization.

[95]  S. Akira,et al.  Toll-Like Receptors Are Temporally Involved in Host Defense , 2004, The Journal of Immunology.

[96]  S. Falkow,et al.  Salmonella typhimurium Persists within Macrophages in the Mesenteric Lymph Nodes of Chronically Infected Nramp1 + / + Mice and Can Be Reactivated by IFNγ Neutralization , 2004, The Journal of experimental medicine.

[97]  Harbans Singh,et al.  Carcinoma of the Gallbladder—Is It a Sequel of Typhoid? , 2000, Digestive Diseases and Sciences.

[98]  J. V. D. van der Meer,et al.  Persistence of Salmonellae in Blood and Bone Marrow: Randomized Controlled Trial Comparing Ciprofloxacin and Chloramphenicol Treatments against Enteric Fever , 2003, Antimicrobial Agents and Chemotherapy.

[99]  W. Hardt,et al.  The Salmonella enterica Serotype Typhimurium Effector Proteins SipA, SopA, SopB, SopD, and SopE2 Act in Concert To Induce Diarrhea in Calves , 2002, Infection and Immunity.

[100]  W. Schwesinger,et al.  Biofilm Formation and Interaction with the Surfaces of Gallstones by Salmonella spp , 2002, Infection and Immunity.

[101]  M. Aepfelbacher,et al.  SopE and SopE2 from Salmonella typhimurium Activate Different Sets of RhoGTPases of the Host Cell* , 2001, The Journal of Biological Chemistry.

[102]  E. McGhie,et al.  Cooperation between actin‐binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin , 2001, The EMBO journal.

[103]  J. Wain,et al.  Typhoid fever and genetic polymorphisms at the natural resistance-associated macrophage protein 1. , 2001, The Journal of infectious diseases.

[104]  F. Heffron,et al.  Salmonella Pathogenicity Island 1-Independent Induction of Apoptosis in Infected Macrophages bySalmonella enterica Serotype Typhimurium , 2000, Infection and Immunity.

[105]  J. Galán,et al.  A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion , 1999, Nature.

[106]  R. Döffinger,et al.  Inherited interleukin 12 deficiency in a child with bacille Calmette-Guérin and Salmonella enteritidis disseminated infection. , 1998, The Journal of clinical investigation.

[107]  J. Casanova,et al.  Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. , 1998, Science.

[108]  C. Bloch,et al.  "Black holes" and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[109]  S. Chapes,et al.  Salmonella infections in the absence of the major histocompatibility complex II , 1998, Journal of leukocyte biology.

[110]  J. Casanova,et al.  Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. , 1997, The Journal of clinical investigation.

[111]  D. Malo,et al.  The Bcg/Ity/Lsh locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1 Gly169 allele , 1996, Infection and immunity.

[112]  T. Butler,et al.  Interleukin-6, gamma interferon, and tumor necrosis factor receptors in typhoid fever related to outcome of antimicrobial therapy , 1993, Antimicrobial Agents and Chemotherapy.

[113]  U. Andersson,et al.  TLR activation regulates damage‐associated molecular pattern isoforms released during pyroptosis , 2022 .