Topological spaces for which every continuous total preorder can be represented by a continuous utility function
暂无分享,去创建一个
[1] L. Nachbin. Topology and order , 1965 .
[2] Ghanshyam B. Mehta. Existence of an order-preserving function on normally preordered spaces , 1986, Bulletin of the Australian Mathematical Society.
[3] S. Eilenberg. Ordered Topological Spaces , 1941 .
[4] G. Debreu. Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .
[5] G. Herden. On the existence of utility functions ii , 1989 .
[6] G. Mehta. On a theorem of Fleischer , 1986, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[7] I. Fleischer. Numerical Representation of Utility , 1961 .
[8] James R. Munkres,et al. Topology; a first course , 1974 .
[9] G. Debreu. Mathematical Economics: Continuity properties of Paretian utility , 1964 .