Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations

Abstract This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.

[1]  Jérôme Droniou,et al.  Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle , 2011, SIAM J. Numer. Anal..

[2]  Junping Wang,et al.  Weak Galerkin finite element methods for Parabolic equations , 2012, 1212.3637.

[3]  Junping Wang,et al.  A weak Galerkin finite element method with polynomial reduction , 2013, J. Comput. Appl. Math..

[4]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[5]  Qilong Zhai,et al.  A hybridized weak Galerkin finite element scheme for the Stokes equations , 2015, Science China Mathematics.

[6]  Lin Mu,et al.  A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods , 2013, J. Comput. Phys..

[7]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[8]  Qilong Zhai,et al.  The weak Galerkin method for solving the incompressible Brinkman flow , 2016, J. Comput. Appl. Math..

[9]  Yuan Liu,et al.  High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes , 2014, 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS).

[10]  Shan Zhao,et al.  WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS. , 2013, Journal of computational physics.

[11]  H. Roos,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations-Supplements , 2022, ArXiv.

[12]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[13]  Richard S. Varga,et al.  On a Discrete Maximum Principle , 1966 .

[14]  Todd F. Dupont,et al.  Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..

[15]  Weizhang Huang,et al.  Discrete Maximum Principle for the Weak Galerkin Method for Anisotropic Diffusion Problems , 2014, 1401.6232.

[16]  Junping Wang,et al.  A primal-dual weak Galerkin finite element method for second order elliptic equations in non-divergence form , 2015, Math. Comput..

[17]  Yifan Zhang,et al.  Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes , 2013, J. Comput. Phys..

[18]  Jingxue Yin,et al.  Elliptic And Parabolic Equations , 2006 .

[19]  Lin Mu,et al.  A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations , 2012, 1210.3818.

[20]  Ran Zhang,et al.  A New Weak Galerkin Finite Element Scheme for the Brinkman Model , 2016 .

[21]  Ran Zhang,et al.  Maximum Principles for P1-Conforming Finite Element Approximations of Quasi-linear Second Order Elliptic Equations , 2011, SIAM J. Numer. Anal..

[22]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[23]  Enrico Bertolazzi,et al.  A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..

[24]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[25]  Qilong Zhai,et al.  A Weak Galerkin Finite Element Scheme for the Biharmonic Equations by Using Polynomials of Reduced Order , 2015, J. Sci. Comput..