Innnite -calculus and Types ?

Recent work on innnitary versions of the lambda calculus has shown that the innnite lambda calculus can be a useful tool to study the unsolvable terms of the classical lambda calculus. Working in the framework of the intersection type disciplines, we devise a type assignment system such that two terms are equal in the innnite lambda calculus ii they can be assigned the same types in any basis. A novel feature of the system is the presence of a type constant to denote the set of all terms of order zero, and the possibility of applying a type to another type. We prove a completeness and an approximation theorem for our system. Our results can be considered as a rst step towards the goal of giving a denotational semantics for the lambda calculus which is suited for the study of the unsolvable terms. However some non-continuity phenomena of the innnite lambda calculus make a full realization of this idea (namely the construction of a lter model) a quite diicult task.

[1]  M. Dezani-Ciancaglini,et al.  Extended Type Structures and Filter Lambda Models , 1984 .

[2]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[3]  de Ng Dick Bruijn,et al.  Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[4]  J. Roger Hindley,et al.  Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.

[5]  Jerzy Tiuryn,et al.  Discrimination by parallel observers , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[6]  Albert R. Meyer,et al.  What is a Model of the Lambda Calculus? , 1982, Inf. Control..

[7]  Furio Honsell,et al.  Operational, denotational and logical descriptions: a case study , 1992, Fundam. Informaticae.

[8]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[9]  Benedetto Intrigila,et al.  Some New Results on Easy lambda-Terms , 1993, Theor. Comput. Sci..

[10]  R. Kerth Isomorphisme et equivalence equationnelle entre modeles du λ-calcul , 1995 .

[11]  Simona Ronchi Della Rocca,et al.  Principal Type Schemes for an Extended Type Theory , 1984, Theor. Comput. Sci..

[12]  Furio Honsell,et al.  An Abstract Notion of Application , 1993, TLCA.

[13]  Pawel Urzyczyn The Emptiness Problem for Intersection Types , 1999, J. Symb. Log..

[14]  Furio Honsell,et al.  An Approximation Theorem for Topological Lambda Models and the Topological Incompleteness of Lambda Calculus , 1992, J. Comput. Syst. Sci..

[15]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[16]  Hirofumi Yokouchi,et al.  F-Semantics for Type Assignment Systems , 1994, Theor. Comput. Sci..

[17]  Glynn Winskel,et al.  The formal semantics of programming languages - an introduction , 1993, Foundation of computing series.

[18]  Jan Willem Klop,et al.  Trans nite Reductions in Orthogonal Term Rewriting , 1995 .

[19]  Antonino Salibra,et al.  A Finite Equational Axiomatization of the Functional Algebras for the Lambda Calculus , 1999, Inf. Comput..

[20]  Wilfrid Hodges,et al.  Logic: from foundations to applications: European logic colloquium , 1996 .

[21]  J. Baeten,et al.  Ω Can be anything it should not be , 1979 .

[22]  Masako Takahashi λ-calculi with conditional rules , 1992 .

[23]  Furio Honsell,et al.  Some Results on the Full Abstraction Problem for Restricted Lambda Calculi , 1993, MFCS.

[24]  Mariangiola Dezani-Ciancaglini,et al.  Filter models for conjunctive-disjunctive l-calculi , 1996 .

[25]  Giuseppe Jacopini,et al.  A condition for identifying two elements of whatever model of combinatory logic , 1975, Lambda-Calculus and Computer Science Theory.

[26]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[27]  M. Coppo Type theories, normal forms, and D?-lambda-models*1 , 1987 .

[28]  Benedetto Intrigila A problem on easy terms in Calculus , 1991, Fundam. Informaticae.

[29]  Simona Ronchi Della Rocca,et al.  Characterization Theorems for a Filter Lambda Model , 1982, Inf. Control..

[30]  Steffen van Bakel,et al.  Complete Restrictions of the Intersection Type Discipline , 1992, Theor. Comput. Sci..

[31]  C.-H. Luke Ong,et al.  Full Abstraction in the Lazy Lambda Calculus , 1993, Inf. Comput..