Structural Statistical Quantifiers and Thermal Features of Quantum Systems

This paper deals primarily with relatively novel thermal quantifiers called disequilibrium and statistical complexity, whose role is growing in different disciplines of physics and other sciences. These quantifiers are called L. Ruiz, Mancini, and Calvet (LMC) quantifiers, following the initials of the three authors who advanced them. We wish to establish information-theoretical bridges between LMC structural quantifiers and (1) Thermal Heisenberg uncertainties ΔxΔp (at temperature T); (2) A nuclear physics fermion model. Having achieved such purposes, we determine to what an extent our bridges can be extended to both the semi-classical and classical realms. In addition, we find a strict bound relating a special LMC structural quantifier to quantum uncertainties.

[1]  T. Duguet,et al.  Pairing correlations. II.: Microscopic analysis of odd-even mass staggering in nuclei , 2001, nucl-th/0105050.

[2]  Osvaldo A. Rosso,et al.  Statistical complexity and disequilibrium , 2003 .

[3]  Karol Zyczkowski,et al.  Rényi-Wehrl entropies as measures of localization in phase space , 2001 .

[4]  Celia Anteneodo,et al.  Some features of the López-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity , 1996 .

[5]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[6]  Jos Uffink,et al.  Thermodynamic Uncertainty Relations , 1998 .

[7]  Benoit B. Mandelbrot,et al.  An outline of a purely phenomenological theory of statistical thermodynamics-I: Canonical ensembles , 1956, IRE Trans. Inf. Theory.

[8]  Ricardo López-Ruiz,et al.  A Statistical Measure of Complexity , 1995, ArXiv.

[9]  伏見 康治,et al.  Some formal properties of the density matrix , 1940 .

[10]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[11]  E. K. Lenzi,et al.  Complexity-Entropy Causality Plane as a Complexity Measure for Two-Dimensional Patterns , 2012, PloS one.

[12]  F. Pennini,et al.  Power-law distributions and Fisher's information measure , 2004 .

[13]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[14]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[15]  A. Plastino,et al.  Quantum entanglement in a many-body system exhibiting multiple quantum phase transitions , 2009 .

[16]  A. Plastino,et al.  A density-matrix approach to critical phenomena , 1984 .

[17]  A. Plastino,et al.  Thermodynamics’ third law and quantum phase transitions , 2010 .

[18]  A. Wehrl General properties of entropy , 1978 .

[19]  Linkage between thermodynamic quantities and the uncertainty relation in harmonic oscillator model , 2016 .

[20]  A. Plastino,et al.  How fundamental is the character of thermal uncertainty relations , 2001, cond-mat/0110135.

[21]  A. Katz Principles of statistical mechanics : the information theory approach , 1967 .

[22]  A. Plastino,et al.  Constrained Hartree-Fock and quasi-spin projection , 1980 .

[23]  E. Lieb Proof of an entropy conjecture of Wehrl , 1978 .

[24]  J. S. Dehesa,et al.  Entropy and complexity properties of the d-dimensional blackbody radiation , 2014, 1502.05286.

[25]  A. Plastino,et al.  Disequilibrium, thermodynamic relations, and Rényi's entropy , 2017 .

[26]  A. Plastino,et al.  Simplified model for illustrating Hartree-Fock in a Lipkin-model problem , 1978 .

[27]  D. Nath,et al.  Complexity analysis of two families of orthogonal functions , 2019, International Journal of Quantum Chemistry.

[28]  B. Lavenda Bayesian approach to thermostatistics , 1988 .

[29]  Heisenberg-Fisher thermal uncertainty measure. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Sheila López-Rosa,et al.  Analysis of complexity measures and information planes of selected molecules in position and momentum spaces. , 2010, Physical chemistry chemical physics : PCCP.

[31]  Á. Fülöp Statistical complexity of the time dependent damped L84 model. , 2019, Chaos.

[32]  M. Strayer,et al.  The Nuclear Many-Body Problem , 2004 .

[33]  B. Lavenda Thermodynamic uncertainty relations and irreversibility , 1987 .

[34]  A. Plastino,et al.  THERMODYNAMIC DETECTION OF QUANTUM PHASE TRANSITIONS , 2010 .

[35]  A. Plastino,et al.  Statistical quantifiers for few-fermion’ systems , 2018 .

[36]  W. Nazarewicz,et al.  ODD-EVEN STAGGERING OF NUCLEAR MASSES : PAIRING OR SHAPE EFFECT? , 1998, nucl-th/9804060.

[37]  B. Mandelbrot On the Derivation of Statistical Thermodynamics from Purely Phenomenological Principles , 1964 .

[38]  V. Anderson,et al.  Information-theoretic measure of uncertainty due to quantum and thermal fluctuations. , 1993, Physical review. D, Particles and fields.

[39]  B. Lavenda On the phenomenological basis of statistical thermodynamics , 1988 .

[40]  H. Lipkin,et al.  VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL. III. DIAGRAM SUMMATIONS , 1965 .

[41]  J. S. Dehesa,et al.  Entropy and complexity analysis of Dirac-delta-like quantum potentials , 2011 .

[42]  B. Mandelbrot The Role of Sufficiency and of Estimation in Thermodynamics , 1962 .

[43]  A. Plastino,et al.  Aspects of quantum phase transitions , 2008, 0809.3514.