Differential transport of DNA by a rectified Brownian motion device

An interdigitated electrode array (IDEA) device has been designed and used to transport DNA based on a Brownian ratchet mechanism. This migration is produced by the periodic formation of an asymmetric sawtooth electric field in the device. Oligonucleo tides of 25, 50, and 100 bases in length were tested using two different array geometries. DNA transport as a function of DNA size, electric field frequency, and array geometry is shown to be in qualitative agreement with theory. Such a device could provide for DNA separations over a broad size range, and can be readily scaled as a component in a microfabricated DNA analysis system.

[1]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[2]  M. Sheetz,et al.  Force of single kinesin molecules measured with optical tweezers. , 1993, Science.

[3]  F. Larimer,et al.  Electrochemically induced adsorption of radio-labeled DNA on gold and HOPG substrates for STM investigations. , 1991, Ultramicroscopy.

[4]  A. Hudspeth,et al.  Movement of microtubules by single kinesin molecules , 1989, Nature.

[5]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[6]  F. Jülicher,et al.  Modeling molecular motors , 1997 .

[7]  Kaplan,et al.  Optical thermal ratchet. , 1995, Physical review letters.

[8]  E. Yeung,et al.  Direct Measurement of Single-Molecule Diffusion and Photodecomposition in Free Solution , 1997, Science.

[9]  D. J. Harrison,et al.  Clinical potential of microchip capillary electrophoresis systems , 1997, Electrophoresis.

[10]  Tarlie Mb,et al.  Optimal modulation of a Brownian ratchet and enhanced sensitivity to a weak external force. , 1998 .

[11]  David T. Burke,et al.  Microfabricated devices for genetic diagnostics , 1998, Proc. IEEE.

[12]  Bier,et al.  Fluctuation driven ratchets: Molecular motors. , 1994, Physical review letters.

[13]  Deniz Ertas Lateral Separation of Macromolecules and Polyelectrolytes in Microlithographic Arrays , 1998 .

[14]  V. Brabec Electrochemical oxidation of nucleic acids and proteins at graphite electrode. Qualitative aspects , 1980 .

[15]  Levine,et al.  Spiral competition in three-component excitable media. , 1996, Physical review letters.

[16]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[17]  Stephen C. Jacobson,et al.  Open channel electrochromatography on a microchip , 1994 .

[18]  Riordan,et al.  Nonequilibrium fluctuation-induced transport. , 1994, Physical review letters.

[19]  A. Paulus,et al.  Rapid separation and purification of oligonucleotides by high-performance capillary gel electrophoresis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[20]  H. Yamakawa,et al.  Statistical mechanics of helical wormlike chains. I. Differential equations and moments , 1976 .

[21]  R. Astumian,et al.  Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. , 1996, Biophysical journal.

[22]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[23]  V. Brabec Interaction of nucleic acids with electrically charged surfaces. VI. A comparative study on the electrochemical behaviour of native and denatured DNAs at graphite electrodes. , 1979, Biophysical chemistry.

[24]  Joseph Wang,et al.  Adsorptive stripping potentiometry of DNA at electrochemically pretreated carbon paste electrodes , 1996 .

[25]  Prost,et al.  Asymmetric pumping of particles. , 1994, Physical review letters.

[26]  A. Woolley,et al.  Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Robert H. Austin,et al.  Microfabricated sieve for the continuous sorting of macromolecules , 1998 .

[28]  R. Astumian Thermodynamics and kinetics of a Brownian motor. , 1997, Science.

[29]  Brian N. Johnson,et al.  An integrated nanoliter DNA analysis device. , 1998, Science.

[30]  G. Drouin,et al.  Free-solution electrophoresis of DNA , 1998 .

[31]  A. Ajdari,et al.  Directional motion of brownian particles induced by a periodic asymmetric potential , 1994, Nature.

[32]  T. Duke,et al.  Sequencing in nanofabricated arrays: A feasibility study , 1997, Electrophoresis.

[33]  R E Harrington,et al.  Potentiostatic deposition of DNA for scanning probe microscopy. , 1992, Biophysical journal.

[34]  M. Magnasco,et al.  Forced thermal ratchets. , 1993, Physical review letters.

[35]  G. Slater,et al.  Bidirectional Transport of Polyelectrolytes Using Self-Modulating Entropic Ratchets , 1997 .

[36]  Ralph N. Adams,et al.  Electrochemistry at Solid Electrodes , 1969 .

[37]  E. Paleček,et al.  From polarography of DNA to microanalysis with nucleic acid-modified electrodes , 1996 .

[38]  C. Brett,et al.  On the adsorption and electrochemical oxidation of DNA at glassy carbon electrodes , 1994 .

[39]  R. Astumian Adiabatic Theory for Fluctuation-Induced Transport on a Periodic Potential , 1996 .

[40]  Pascal Silberzan,et al.  Rectified motion of a mercury drop in an asymmetric structure , 1996 .