Motion sensitive interneurons in the optomotor system of the fly

The three horizontal cells of the lobula plate of the blowflyCalliphora erythrocephala were studied anatomically and physiologically by means of cobalt impregnations and intracellular recordings combined with Procion and Lucifer Yellow injections. The cells are termed north, equatorial and south horizontal cell (HSN, HSE, HSS) and are major output neurons of the optic lobe. 1. The dendritic arborizations of the HSN, HSE, HSS reside in a thin anterior layer of the lobula plate and extend over the dorsal, equatorial and ventral parts of this neuropil, respectively. Due to the retinotopic organization of the optic lobe, these parts correspond anatomically to respective regions of the ipsilateral visual field. Homologue horizontal cells in both lobula plates of the same animal and in different animals are highly variable with respect to their individual dendritic branching patterns. They are extraordinarily constant, on the other hand, with regard to the position and size of their dendritic fields as well as their dendritic branching density distributions. Each cell covers about 40% of the total area of the lobula plate and shows the highest dendritic density near the lateral margin of the neuropil which subserves the frontal eye region. The axons of the horizontal cells are relatively short and large in diameter; they terminate in the posterior ventrolateral protocerebrum. 2. The horizontal cells are directionally selective motion sensitive visual interneurons responding preferentially to progressive (front to back) motion in the ipsilateral visual field with graded depolarization of their axons and superimposed action potentials. Stimulation with motion in the reverse direction leads to hyperpolarizing graded responses. The HSE and HSN are additionally activated by regressive motion in the contralateral visual field.

[1]  R. Lillie,et al.  Histopathologic Technic and Practical Histochemistry , 1954 .

[2]  J. Case,et al.  Differentiation of the effects of pH and CO2 on spiracular function of insects. , 1957, Journal of cellular and comparative physiology.

[3]  B. Katz Nerve, Muscle and Synapse , 1966 .

[4]  G. D. Mccann,et al.  Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. , 1968, Journal of neurophysiology.

[5]  G. D. Mccann,et al.  Fundamental Properties of Intensity, Form, and Motion Perception in the Visual Nervous Systems of Calliphora phaenicia and Musca domestica , 1969, The Journal of general physiology.

[6]  V. Braitenberg Periodic structures and structural gradients in the visual ganglia of the fly , 1972 .

[7]  K. Kirschfeld The visual system of Musca: Studies on optics, structure and function , 1972 .

[8]  M. Cohen,et al.  Branching of Central Neurons: Intracellular Cobalt Injection for Light and Electron Microscopy , 1972, Science.

[9]  Jaroslav Král,et al.  A note on grammars with regular restrictions , 1973, Kybernetika.

[10]  E. M. Bell,et al.  The intensification of cobalt-filled neurone profiles using a modification of Timm's sulphide-silver method. , 1974, Brain research.

[11]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[12]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[13]  C. Nicholson Electric current flow in excitable cells J. J. B. Jack, D. Noble &R. W. Tsien Clarendon Press, Oxford (1975). 502 pp., £18.00 , 1976, Neuroscience.

[14]  K. Hausen Functional Characterization and Anatomical Identification of Motion Sensitive Neurons in the Lobula plate of the Blowfly Calliphora erythrocephala , 1976 .

[15]  N. Strausfeld Mosaic Organizations, Layers, and Visual Pathways in the Insect Brain , 1976 .

[16]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[17]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[18]  K Hausen,et al.  Signal Processing in the Insect Eye , 1977 .

[19]  R. Hengstenberg Spike responses of ‘non-spiking’ visual interneurone , 1977, Nature.

[20]  N. J. Strausfeld,et al.  The resolution of neuronal assemblies after cobalt injection into neuropil , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  H. Eckert,et al.  Response properties of dipteran giant visual interneurones involved in control of optomotor behaviour , 1978, Nature.

[22]  W. W. Stewart,et al.  Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer , 1978, Cell.

[23]  K Hausen Neural Circuitry of Visual Orientation Behavior in Flies: Structure and Function of the Lobula Complex , 1979 .

[24]  Roland Hengstenberg,et al.  Intracellular Staining of Insect Neurons with Procion Yellow , 1980 .

[25]  H. A. K. Mastebroek,et al.  Movement detection: Performance of a wide-field element in the visual system of the blowfly , 1980, Vision Research.

[26]  Intensity and motion responses of giant vertical neurons of the fly eye. , 1980, Journal of neurobiology.

[27]  K. Hausen,et al.  An improved cobalt sulfide-silver intensification method for electron microscopy , 1980, Brain Research.

[28]  Action Potentials in "Non-Spiking" Visual Interneurones , 1981 .

[29]  G. Geiger,et al.  Visual orientation behaviour of flies after selective laser beam ablation of interneurones , 1981, Nature.

[30]  J. Blondeau,et al.  Electrically Evoked Course Control in the Fly Calliphora Erythrocephala , 1981 .

[31]  J. Blondeau Aerodynamic Capabilities of Flies, as Revealed by a New Technique , 1981 .

[32]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[33]  R. Pierantoni,et al.  A look into the cock-pit of the fly , 1976, Cell and Tissue Research.

[34]  T. Poggio,et al.  Figure-ground discrimination by relative movement in the visual system of the fly , 1979, Biological cybernetics.

[35]  Gilbert D. McCann,et al.  Binocular interactions of motion detection fibers in the optic lobes of flies , 1971, Kybernetik.

[36]  V. Braitenberg,et al.  Ordnung und Orientierung der Elemente im Sehsystem der Fliege , 1970, Kybernetik.

[37]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[38]  Hendrik Eckert,et al.  The horizontal cells in the lobula plate of the blowfly,Phaenicia sericata , 1981, Journal of comparative physiology.

[39]  G. Geiger,et al.  Visual processing of moving single objects and wide-field patterns in flies: Behavioural analysis after laser-surgical removal of interneurons , 1982, Biological Cybernetics.

[40]  W. Ribi The first optic ganglion of the bee , 1976, Cell and Tissue Research.

[41]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[42]  K. Hausen,et al.  The synaptic organization of visual interneurons in the lobula complex of flies , 1980, Cell and Tissue Research.

[43]  R. Hengstenberg Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora , 1982, Journal of comparative physiology.

[44]  Martin Wilson Generation of graded potential signals in the second order cells of locust ocellus , 1978, Journal of comparative physiology.

[45]  G. Heide Properties of a motor output system involved in the optomotor response in flies , 1975, Biological Cybernetics.

[46]  D. G. Stavenga,et al.  Retinal lattice, visual field and binocularities in flies , 1977, Journal of comparative physiology.

[47]  T. Poggio,et al.  Considerations on models of movement detection , 1973, Kybernetik.

[48]  Klaus Hausen,et al.  Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[49]  Karl Georg Götz,et al.  Optomotor control of wing beat and body posture in drosophila , 1979, Biological Cybernetics.

[50]  Erich Buchner,et al.  Elementary detectors for vertical movement in the visual system of Drosophila , 1978, Biological Cybernetics.

[51]  Christian Wehrhahn,et al.  How is tracking and fixation accomplished in the nervous system of the fly? , 1980, Biological Cybernetics.

[52]  Hendrik Eckert,et al.  Functional properties of the H1-neurone in the third optic Ganglion of the Blowfly,Phaenicia , 1980, Journal of comparative physiology.

[53]  R. Hengstenberg,et al.  The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala , 1982, Journal of comparative physiology.

[54]  Martin Heisenberg,et al.  The three-dimensional optomotor torque system ofDrosophila melanogaster , 1982, Journal of comparative physiology.

[55]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[56]  Lewis G. Bishop,et al.  On the identification of movement detectors in the fly optic lobe , 2004, Journal of comparative physiology.

[57]  B. Pick,et al.  Visual pattern discrimination as an element of the fly's orientation behaviour , 1976, Biological Cybernetics.

[58]  W. Zaagman,et al.  On the correlation model: Performance of a movement detecting neural element in the fly visual system , 1978, Biological Cybernetics.

[59]  W. Ribi,et al.  Light and electron microscopic structure of golgi-stained neurons in the vertebrate brain (new rapid Golgi procedure) , 2004, Cell and Tissue Research.

[60]  T. Poggio,et al.  A neuronal circuitry for relative movement discrimination by the visual system of the fly , 1981, Naturwissenschaften.

[61]  H. Eckert,et al.  Anatomical and physiological properties of the vertical cells in the third optic ganglion ofPhaenicia sericata (Diptera, Calliphoridae) , 1978, Journal of comparative physiology.

[62]  N. Franceschini,et al.  Les phénomènes de pseudopupille dans l'œil composé deDrosophila , 1971, Kybernetik.

[63]  W. R. Levick,et al.  Another tungsten microelectrode , 1972, Medical and biological engineering.