Column distance of convolutional codes over Zpr
暂无分享,去创建一个
[1] Joachim Rosenthal,et al. Strongly-MDS convolutional codes , 2003, IEEE Transactions on Information Theory.
[2] Sandro Zampieri,et al. System-theoretic properties of convolutional codes over rings , 2001, IEEE Trans. Inf. Theory.
[3] Virgilio Sison,et al. Convolutional Codes Over Rings , 2005 .
[4] J. Polderman,et al. The predictable degree property and row reducedness for systems over a finite ring , 2007 .
[5] Noemí DeCastro-García,et al. Linear representations of convolutional codes over rings , 2016, ArXiv.
[6] Patrick Solé,et al. MDS Convolutional Codes Over a Finite Ring , 2013, IEEE Transactions on Information Theory.
[7] T. Aaron Gulliver,et al. MDS and self-dual codes over rings , 2012, Finite Fields Their Appl..
[8] Rolf Johannesson,et al. Fundamentals of Convolutional Coding , 1999 .
[9] Rolf Johannesson,et al. Some Structural Properties of Convolutional Codes over Rings , 1998, IEEE Trans. Inf. Theory.
[10] Patrick Solé,et al. Bounds on the Minimum Homogeneous Distance of the pr-ary Image of Linear Block Codes over the Galois Ring GR(pr, m) , 2007, ISIT.
[11] Ryan Hutchinson. The Existence of Strongly MDS Convolutional Codes , 2008, SIAM J. Control. Optim..
[12] Marisa Lapa Toste. Distance properties of convolutional codes over Z pr , 2016 .
[13] Graham H. Norton,et al. On the Hamming distance of linear codes over a finite chain ring , 2000, IEEE Trans. Inf. Theory.
[14] Daniel J. Costello. A construction technique for random-error-correcting convolutional codes , 1969, IEEE Trans. Inf. Theory.
[15] B. Sundar Rajan,et al. An efficient algorithm for constructing minimal trellises for codes over finite abelian groups , 1996, IEEE Trans. Inf. Theory.
[16] Patrick Solé,et al. Quaternary Convolutional Codes From Linear Block Codes Over Galois Rings , 2007, IEEE Transactions on Information Theory.
[17] Mitchell D. Trott,et al. The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.
[18] Joachim Rosenthal,et al. Convolutional codes with maximum distance profile , 2003, Syst. Control. Lett..
[19] Rolf Johannesson,et al. Two 16-State, Rate R = 2/4 Trellis Codes Whose Free Distances Meet the Heller Bound , 1998, IEEE Trans. Inf. Theory.
[20] Hans-Andrea Loeliger,et al. Construction of linear ring codes for 6 PSK , 1994, IEEE Trans. Inf. Theory.
[21] Diego Napp Avelli,et al. Constructing strongly-MDS convolutional codes with maximum distance profile , 2016, Adv. Math. Commun..
[22] Joachim Rosenthal,et al. Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.
[23] Joachim Rosenthal,et al. Decoding of Convolutional Codes Over the Erasure Channel , 2012, IEEE Transactions on Information Theory.
[24] Diego Napp Avelli,et al. A new class of superregular matrices and MDP convolutional codes , 2013, ArXiv.
[25] Margreta Kuijper,et al. On Minimality of Convolutional Ring Encoders , 2008, IEEE Transactions on Information Theory.
[26] B. R. McDonald. Finite Rings With Identity , 1974 .
[27] Sandro Zampieri,et al. Dynamical systems and convolutional codes over finite Abelian groups , 1996, IEEE Trans. Inf. Theory.
[28] Diego Napp Avelli,et al. On MDS convolutional codes over Zpr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p^{r}}$$\end{documen , 2016, Designs, Codes and Cryptography.
[29] Margreta Kuijper,et al. Minimal Gröbner bases and the predictable leading monomial property , 2009, ArXiv.
[30] Hans-Andrea Loeliger,et al. Convolutional codes over groups , 1996, IEEE Trans. Inf. Theory.
[31] N. J. A. Sloane,et al. Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..
[32] S. K. Chang,et al. Algorithmic Solution of the Change-Making Problem , 1970, JACM.