Column distance of convolutional codes over Zpr

Rosenthal et al. introduced and thoroughly studied the notion of Maximum Distance Profile (MDP) convolutional codes over (non-binary) finite fields refining the classical notion of optimum distance profile, see for instance [18, p.164]. These codes have the property that their column distances are maximal among all codes of the same rate and the same degree. In this paper we aim at studying this fundamental notion in the context of convolutional codes over a finite ring. We extensively use the notion of p-encoder to present upper-bounds on the column distances which allow to introduce the notion of MDP in the context of finite rings. A constructive method for (non necessarily free) MDP convolutional codes over Z p r is presented.

[1]  Joachim Rosenthal,et al.  Strongly-MDS convolutional codes , 2003, IEEE Transactions on Information Theory.

[2]  Sandro Zampieri,et al.  System-theoretic properties of convolutional codes over rings , 2001, IEEE Trans. Inf. Theory.

[3]  Virgilio Sison,et al.  Convolutional Codes Over Rings , 2005 .

[4]  J. Polderman,et al.  The predictable degree property and row reducedness for systems over a finite ring , 2007 .

[5]  Noemí DeCastro-García,et al.  Linear representations of convolutional codes over rings , 2016, ArXiv.

[6]  Patrick Solé,et al.  MDS Convolutional Codes Over a Finite Ring , 2013, IEEE Transactions on Information Theory.

[7]  T. Aaron Gulliver,et al.  MDS and self-dual codes over rings , 2012, Finite Fields Their Appl..

[8]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[9]  Rolf Johannesson,et al.  Some Structural Properties of Convolutional Codes over Rings , 1998, IEEE Trans. Inf. Theory.

[10]  Patrick Solé,et al.  Bounds on the Minimum Homogeneous Distance of the pr-ary Image of Linear Block Codes over the Galois Ring GR(pr, m) , 2007, ISIT.

[11]  Ryan Hutchinson The Existence of Strongly MDS Convolutional Codes , 2008, SIAM J. Control. Optim..

[12]  Marisa Lapa Toste Distance properties of convolutional codes over Z pr , 2016 .

[13]  Graham H. Norton,et al.  On the Hamming distance of linear codes over a finite chain ring , 2000, IEEE Trans. Inf. Theory.

[14]  Daniel J. Costello A construction technique for random-error-correcting convolutional codes , 1969, IEEE Trans. Inf. Theory.

[15]  B. Sundar Rajan,et al.  An efficient algorithm for constructing minimal trellises for codes over finite abelian groups , 1996, IEEE Trans. Inf. Theory.

[16]  Patrick Solé,et al.  Quaternary Convolutional Codes From Linear Block Codes Over Galois Rings , 2007, IEEE Transactions on Information Theory.

[17]  Mitchell D. Trott,et al.  The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.

[18]  Joachim Rosenthal,et al.  Convolutional codes with maximum distance profile , 2003, Syst. Control. Lett..

[19]  Rolf Johannesson,et al.  Two 16-State, Rate R = 2/4 Trellis Codes Whose Free Distances Meet the Heller Bound , 1998, IEEE Trans. Inf. Theory.

[20]  Hans-Andrea Loeliger,et al.  Construction of linear ring codes for 6 PSK , 1994, IEEE Trans. Inf. Theory.

[21]  Diego Napp Avelli,et al.  Constructing strongly-MDS convolutional codes with maximum distance profile , 2016, Adv. Math. Commun..

[22]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[23]  Joachim Rosenthal,et al.  Decoding of Convolutional Codes Over the Erasure Channel , 2012, IEEE Transactions on Information Theory.

[24]  Diego Napp Avelli,et al.  A new class of superregular matrices and MDP convolutional codes , 2013, ArXiv.

[25]  Margreta Kuijper,et al.  On Minimality of Convolutional Ring Encoders , 2008, IEEE Transactions on Information Theory.

[26]  B. R. McDonald Finite Rings With Identity , 1974 .

[27]  Sandro Zampieri,et al.  Dynamical systems and convolutional codes over finite Abelian groups , 1996, IEEE Trans. Inf. Theory.

[28]  Diego Napp Avelli,et al.  On MDS convolutional codes over Zpr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p^{r}}$$\end{documen , 2016, Designs, Codes and Cryptography.

[29]  Margreta Kuijper,et al.  Minimal Gröbner bases and the predictable leading monomial property , 2009, ArXiv.

[30]  Hans-Andrea Loeliger,et al.  Convolutional codes over groups , 1996, IEEE Trans. Inf. Theory.

[31]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[32]  S. K. Chang,et al.  Algorithmic Solution of the Change-Making Problem , 1970, JACM.