Revealing of the minor iron-bearing phases in the Mössbauer spectra of Chelyabinsk LL5 ordinary chondrite fragments

A detailed analysis of two fragments of Chelyabinsk LL5 ordinary chondrite using scanning electron microscopy with energy dispersion spectroscopy, X-ray diffraction and 57Fe Mossbauer spectroscopy with a high velocity resolution was carried out. Chemical analysis demonstrated the presence of the minor iron-bearing phases such as chromite, hercynite, ilmenite, α-Fe(Ni, Co), α2-Fe(Ni, Co), γ-Fe(Ni, Co) in addition to the main iron-bearing phases (olivine, orthopyroxene and troilite). These minor components were also revealed in the XRD and Mossbauer spectra of the two fragments of Chelyabinsk LL5 meteorite.

[1]  Z. Homonnay,et al.  Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: an example of Chelyabinsk LL5 meteorite , 2016 .

[2]  Z. Homonnay,et al.  Study of Chelyabinsk LL5 meteorite fragments with different lithology using Mössbauer spectroscopy with a high velocity resolution , 2016, Journal of Radioanalytical and Nuclear Chemistry.

[3]  R. Morris,et al.  Mineralogy, petrology, chronology, and exposure history of the Chelyabinsk meteorite and parent body , 2015 .

[4]  M. Oshtrakh,et al.  The 57Fe hyperfine interactions in the iron bearing phases in different fragments of Chelyabinsk LL5 meteorite: a comparative study using Mössbauer spectroscopy with a high velocity resolution , 2015 .

[5]  M. Oshtrakh,et al.  Study of Chelyabinsk LL5 meteorite fragment with a light lithology and its fusion crust using Mössbauer spectroscopy with a high velocity resolution , 2014 .

[6]  Z. Homonnay,et al.  A comparative study of troilite in bulk ordinary chondrites Farmington L5, Tsarev L5 and Chelyabinsk LL5 using Mössbauer spectroscopy with a high velocity resolution , 2014 .

[7]  M. Oshtrakh,et al.  Characterization of a Chelyabinsk LL5 meteorite fragment using Mössbauer spectroscopy with a high velocity resolution , 2014 .

[8]  F. Hawthorne,et al.  Local structure in C2/c clinopyroxenes on the hedenbergite (CaFeSi2O6)-ferrosilite (Fe2Si2O6) join: A new interpretation for the Mössbauer spectra of Ca-rich C2/c clinopyroxenes and implications for pyroxene exsolution , 2013 .

[9]  V. A. Semionkin,et al.  Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  O. Milder,et al.  A high velocity resolution Mössbauer spectrometric system for biomedical research , 2010 .

[11]  O. Milder,et al.  Mössbauer spectroscopy with high velocity resolution: an increase of analytical possibilities in biomedical research , 2009 .

[12]  V. A. Semionkin,et al.  A study of ordinary chondrites by Mössbauer spectroscopy with high‐velocity resolution , 2008 .

[13]  G. A. Stewart,et al.  A combined 57Fe–Mössbauer and X-ray diffraction study of the ilmenite reduction process in a commercial rotary kiln , 2008 .

[14]  C. McCammon,et al.  Temperature dependence of the hyperfine parameters of synthetic P21/c Mg-Fe clinopyroxenes along the MgSiO3-FeSiO3 join , 2000 .

[15]  V. Tcherdyntsev,et al.  Transformations and fine magnetic structure of mechanically alloyed Fe-Ni alloys , 1999 .

[16]  M. Fleet,et al.  Fe2+ -Fe3+ ordering in chromite and Cr-bearing spinels , 1981 .

[17]  R. T. Dodd Meteorites. A petrologic-chemical synthesis. , 1981 .