California wildfire spread derived using VIIRS satellite observations and an object-based tracking system

[1]  J. Randerson,et al.  Wildfire response to changing daily temperature extremes in California’s Sierra Nevada , 2021, Science advances.

[2]  Adam L. Mahood,et al.  FIRED (Fire Events Delineation): An Open, Flexible Algorithm and Database of US Fire Events Derived from the MODIS Burned Area Product (2001-2019) , 2020, Remote. Sens..

[3]  A. Sprecher,et al.  Atmospheres , 2019, Adiabatic Thermodynamics of Fluids.

[4]  Bin Chen,et al.  Satellite-Based Fire Progression Mapping: A Comprehensive Assessment for Large Fires in Northern California , 2020, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[5]  Emilio Chuvieco,et al.  A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data , 2020 .

[6]  J. San-Miguel-Ayanz,et al.  A global wildfire dataset for the analysis of fire regimes and fire behaviour , 2019, Scientific Data.

[7]  M. Wulder,et al.  Generating intra-year metrics of wildfire progression using multiple open-access satellite data streams , 2019, Remote Sensing of Environment.

[8]  S. Goetz,et al.  Increasing wildfires threaten historic carbon sink of boreal forest soils , 2019, Nature.

[9]  J. Randerson,et al.  The Global Fire Atlas of individual fire size, duration, speed and direction , 2018, Earth System Science Data.

[10]  Francis W. Zwiers,et al.  Attribution of the Influence of Human‐Induced Climate Change on an Extreme Fire Season , 2018, Earth's future.

[11]  Philippe Ciais,et al.  FRY, a global database of fire patch functional traits derived from space-borne burned area products , 2018, Scientific Data.

[12]  Christopher. Simons,et al.  Machine learning with Python , 2017 .

[13]  Emilio Chuvieco,et al.  Can We Go Beyond Burned Area in the Assessment of Global Remote Sensing Products with Fire Patch Metrics? , 2016, Remote. Sens..

[14]  José M. C. Pereira,et al.  Highlighting Biome-Specific Sensitivity of Fire Size Distributions to Time-Gap Parameter Using a New Algorithm for Fire Event Individuation , 2016, Remote. Sens..

[15]  Philippe Ciais,et al.  The status and challenge of global fire modelling , 2016 .

[16]  Nikos Koutsias,et al.  Determining Fire Dates and Locating Ignition Points With Satellite Data , 2016, Remote. Sens..

[17]  C. Justice,et al.  The collection 6 MODIS active fire detection algorithm and fire products , 2016, Remote sensing of environment.

[18]  J. Hill,et al.  Fire spread from MODIS burned area data: obtaining fire dynamics information for every single fire , 2016 .

[19]  P. Rasch,et al.  Extreme Fire Season in California: A Glimpse Into the Future? , 2015 .

[20]  E. Chuvieco,et al.  Global fire size distribution is driven by human impact and climate , 2015 .

[21]  E. N. Stavros,et al.  Assessing fire severity using imaging spectroscopy data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and comparison with multispectral capabilities , 2014 .

[22]  Rick Mueller,et al.  The Multi-Resolution Land Characteristics (MRLC) Consortium - 20 Years of Development and Integration of USA National Land Cover Data , 2014, Remote. Sens..

[23]  D. Roy,et al.  Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite‐based active fire characterization and biomass burning estimation , 2014 .

[24]  W. Schroeder,et al.  The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment , 2014 .

[25]  P. Andrews Current status and future needs of the BehavePlus Fire Modeling System , 2014 .

[26]  F. Lloret,et al.  Two thresholds determine climatic control of forest fire size in Europe and northern Africa , 2014, Regional Environmental Change.

[27]  Robert E. Wolfe,et al.  Suomi NPP VIIRS prelaunch and on‐orbit geometric calibration and characterization , 2013 .

[28]  R. Bradstock,et al.  Defining pyromes and global syndromes of fire regimes , 2013, Proceedings of the National Academy of Sciences.

[29]  John Michalakes,et al.  WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model , 2013 .

[30]  J. Abatzoglou Development of gridded surface meteorological data for ecological applications and modelling , 2013 .

[31]  J. Balch,et al.  Introduced annual grass increases regional fire activity across the arid western USA (1980–2009) , 2013, Global change biology.

[32]  Charles W. McHugh,et al.  A Method for Ensemble Wildland Fire Simulation , 2011 .

[33]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[34]  David P. Roy,et al.  Identifying individual fires from satellite-derived burned area data , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[35]  Christopher I. Roos,et al.  Fire in the Earth System , 2009, Science.

[36]  Stephen M. Omohundro,et al.  Five Balltree Construction Algorithms , 2009 .

[37]  B. Quayle,et al.  A Project for Monitoring Trends in Burn Severity , 2007 .

[38]  Scott L. Goodrick,et al.  Observing the Dynamics of Wildland Grass Fires: FireFlux—A Field Validation Experiment , 2007 .

[39]  T. Loboda,et al.  Reconstruction of fire spread within wildland fire events in Northern Eurasia from the MODIS active fire product , 2004 .

[40]  Mark Pilgrim,et al.  Dive Into Python 3 , 2004 .

[41]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[42]  F. H. Harlow,et al.  FIRETEC: A transport description of wildfire behavior , 1997 .

[43]  R. Reynolds,et al.  Bulletin of the American Meteorological Society , 1996 .

[44]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.