Why Do Parameter Values in the Zipf-Mandelbrot Distribution Sometimes Explode?

[1]  A. Davison,et al.  Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy , 2012, Biomedical optics express.

[2]  Alexander Koplenig,et al.  Using the parameters of the Zipf–Mandelbrot law to measure diachronic lexical, syntactical and stylistic changes – a large-scale corpus analysis , 2018 .

[3]  Marcel Ausloos,et al.  Zipf–Mandelbrot–Pareto model for co-authorship popularity , 2014, Scientometrics.

[4]  D. S. Young Approximate tolerance limits for Zipf–Mandelbrot distributions , 2013 .

[5]  A. W. Kemp Families of power series distributions, with particular reference to the Lerch family , 2010 .

[6]  Ján Macutek,et al.  A Data-based Classification of Slavic Languages: Indices of Qualitative Variation Applied to Grapheme Frequencies , 2015, J. Quant. Linguistics.

[7]  Bengt Sigurd,et al.  Rank-Frequency Distributions for Phonemes , 1968 .

[8]  Hongyu Zhang,et al.  Exploring Regularity in Source Code: Software Science and Zipf's Law , 2008, Working Conference on Reverse Engineering.

[9]  Josip Pecaric,et al.  On Zipf-Mandelbrot entropy , 2019, J. Comput. Appl. Math..

[10]  Milan Rusko,et al.  Letter, Grapheme and (Allo-)Phone Frequencies: The Case of Slovak , 2009 .

[11]  Reinhard Köhler,et al.  Quantitative Text Analysis Using L-, F- and T-Segments , 2007, GfKl.

[12]  Paula Buttery,et al.  Zipf's law and the grammar of languages: A quantitative study of Old and Modern English parallel texts , 2014 .

[13]  Marcelo A. Montemurro,et al.  Beyond the Zipf-Mandelbrot law in quantitative linguistics , 2001, ArXiv.

[14]  Peter Grzybek,et al.  On the systematic and system-based study of grapheme frequencies: a re-analysis of German letter frequencies , 2007, Glottometrics.

[15]  Philip Hanna,et al.  Extending Zipf’s law to n-grams for large corpora , 2009, Artificial Intelligence Review.

[16]  János Izsák,et al.  Some practical aspects of fitting and testing the Zipf-Mandelbrot model , 2006, Scientometrics.

[17]  Gabriel Altmann,et al.  Unified representation of Zipf distributions , 1995 .

[18]  L. Vörös,et al.  Structural changes during eutrophication of Lake Balaton, Hungary, as revealed by the Zipf-Mandelbrot model , 1998, Hydrobiologia.

[19]  J. Wilson,et al.  Methods for fitting dominance/diversity curves , 1991 .

[20]  G. Joo,et al.  Carabid beetles in green infrastructures: the importance of management practices for improving the biodiversity in a metropolitan city , 2014, Urban Ecosystems.

[21]  Sheng-De Wang,et al.  Locality and resource aware peer‐to‐peer overlay networks , 2008 .

[22]  Ferenc Izsák,et al.  Maximum likelihood estimation for constrained parameters of multinomial distributions - Application to Zipf-Mandelbrot models , 2006, Comput. Stat. Data Anal..

[23]  Ján Macutek,et al.  Evaluating goodness-of-fit of discrete distribution models in quantitative linguistics , 2013, J. Quant. Linguistics.

[24]  Zhan Renbin,et al.  Species-abundance models for brachiopods across the Ordovician-Silurian boundary of South China , 2014 .

[25]  G. Altmann Science and Linguistics , 1993 .

[26]  R. S. Mendes,et al.  Regularities in football goal distributions , 2000, cond-mat/0002100.

[27]  S. Pavoine,et al.  Links between the species abundance distribution and the shape of the corresponding rank abundance curve , 2012 .

[28]  A. W. Kemp,et al.  Univariate Discrete Distributions: Johnson/Univariate Discrete Distributions , 2005 .

[29]  Peter Grzybek,et al.  Häufigkeiten von Buchstaben / Graphemen / Phonemen: Konvergenzen des Rangierungsverhaltens , 2005, Glottometrics.