Recent advances in the understanding of membrane protein assembly and structure

1. Introduction 286 2. Membrane protein assembly in E. coli 286 2.1. Role of the SRP 287 2.2. YidC – a translocon component devoted to membrane proteins? 287 2.3. The TAT pathway 288 2.4. ‘Spontaneous’ membrane protein insertion 288 3. Membrane protein assembly in the ER 289 3.1. How TM segments exit the translocon 289 3.2. Proteins with multiple topologies 290 3.3. Stop-transfer effector sequences 291 3.4. Non-hydrophobic TM segments? 291 3.5. ‘Frustrated’ topologies 291 3.6. N-tail translocation across the ER 292 4. Membrane protein assembly in mitochondria 292 4.1. The Oxa1p pathway 292 4.2. The TIM22/54 pathway 293 5. Evolution of membrane protein topology 293 5.1. RnfA/RnfE – two homologous proteins with opposite topologies 293 5.2. YrbG – duplicating an odd number of TMs 294 6. Genome-wide analysis of membrane proteins 295 6.1. Prediction methods 295 6.2. How many membrane proteins are there? 295 6.3. The positive-inside rule 296 6.4. Dominant classes of membrane proteins 296 7. The structure of transmembrane α-helices 296 7.1. What TM helices look like 297 7.2. The ‘helical hairpin’ 297 7.3. Prolines in TM helices 297 7.4. Charged residues in TM helices: the ‘snorkel’ effect 298 7.5. The ‘aromatic belt’ 298 8. Helix–helix packing in a membrane environment 298 8.1. Lessons learnt from glycophorin A 298 8.2. Genetic screens for helix–helix interactions 299 8.3. Statistical studies 299 8.4. Membrane protein folding 299 9. Recent 3D structures 300 9.1. KcsA – the first ion channel 300 9.2. MscL – sensing lateral pressure changes 300 9.3. The cytochrome bc 1 complex 300 9.4. Fumarate reductase 301 9.5. Bacteriorhodopsin – watching a membrane protein at work 301 10. Concluding remarks 301 11. Acknowledgements 302 12. References 302 For a variety of reasons – not the least biomedical importance – integral membrane proteins are now very much in focus in many areas of molecular biology, biochemistry, biophysics, and cell biology. Our understanding of the basic processes of membrane protein assembly, folding, and structure has grown significantly in recent times, both as a result of new methodological developments, more high-resolution structure data, and the possibility to analyze membrane proteins on a genome-wide scale. So what is new in the membrane protein field? Various aspects of membrane protein assembly and structure have been reviewed over the past few years (Cowan & Rosenbusch, 1994; Hegde & Lingappa, 1997; Lanyi, 1997; von Heijne, 1997; Bernstein, 1998); here, I will try to bring together a number of exciting recent developments. Particularly noteworthy are the discoveries related to the mechanisms of membrane protein assembly into the inner membrane of E. coli , the inner membrane of mitochondria, and the way transmembrane segments are handled by the ER translocon. Other advances include detailed studies of the interaction between transmembrane helices and the lipid bilayer, and of helix–helix packing interactions in the membrane environment. The availability of full genomic sequences have made it possible to study membrane proteins on a genome-wide scale. Finally, a handful of new high-resolution 3D structures have appeared. This review will deal only with helix bundle proteins, i.e. integral membrane proteins where the transmembrane segments form α-helices. For reviews on the other major class of integral membrane proteins – the β-barrel proteins – see Schirmer (1998) and Buchanan (1999). For readers who prefer a more ‘literary’ introduction to the membrane protein field, may I suggest von Heijne (1999).

[1]  B. Berks,et al.  An Essential Component of a Novel Bacterial Protein Export System with Homologues in Plastids and Mitochondria* , 1998, The Journal of Biological Chemistry.

[2]  G. von Heijne,et al.  Directionality in protein translocation across membranes: the N-tail phenomenon. , 1995, Trends in cell biology.

[3]  W. Neupert,et al.  Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  G. Heijne Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. , 1992, Journal of molecular biology.

[5]  G. Reinhart,et al.  Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore , 1994, Cell.

[6]  W. Gerlich,et al.  Post‐translational alterations in transmembrane topology of the hepatitis B virus large envelope protein. , 1994, The EMBO journal.

[7]  G. von Heijne,et al.  Determination of the Border between the Transmembrane and Cytoplasmic Domains of Human Integrin Subunits* , 1999, The Journal of Biological Chemistry.

[8]  D. Engelman,et al.  Intramembrane helix-helix association in oligomerization and transmembrane signaling. , 1992, Annual review of biophysics and biomolecular structure.

[9]  G von Heijne,et al.  Topological Rules for Membrane Protein Assembly in Eukaryotic Cells* , 1997, The Journal of Biological Chemistry.

[10]  W. Neupert,et al.  Insertion into the mitochondrial inner membrane of a polytopic protein, the nuclear‐encoded Oxa1p , 1997, The EMBO journal.

[11]  D. Engelman,et al.  A dimerization motif for transmembrane α–helices , 1994, Nature Structural Biology.

[12]  D. Engelman,et al.  The GxxxG motif: a framework for transmembrane helix-helix association. , 2000, Journal of molecular biology.

[13]  G. Tusnády,et al.  Principles governing amino acid composition of integral membrane proteins: application to topology prediction. , 1998, Journal of molecular biology.

[14]  Gunnar von Heijne,et al.  Topological “frustration” in multispanning E. coli inner membrane proteins , 1994, Cell.

[15]  Manuel G. Claros,et al.  TopPred II: an improved software for membrane protein structure predictions , 1994, Comput. Appl. Biosci..

[16]  D. Langosch,et al.  The dimerization motif of the glycophorin A transmembrane segment in membranes: Importance of glycine residues , 1998, Protein science : a publication of the Protein Society.

[17]  G. von Heijne,et al.  Topology, Subcellular Localization, and Sequence Diversity of the Mlo Family in Plants* , 1999, The Journal of Biological Chemistry.

[18]  J. A. Newitt,et al.  The E. coli Signal Recognition Particle Is Required for the Insertion of a Subset of Inner Membrane Proteins , 1997, Cell.

[19]  A. Johnson Protein translocation at the ER membrane: A complex process becomes more so. , 1997, Trends in cell biology.

[20]  M. Gerstein,et al.  Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. , 2000, Journal of molecular biology.

[21]  R. Hegde,et al.  Membrane Protein Biogenesis: Regulated Complexity at the Endoplasmic Reticulum , 1997, Cell.

[22]  Manfred Auer,et al.  Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution , 1999, Nature.

[23]  G von Heijne,et al.  Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Kuhn,et al.  Hydrophobic forces drive spontaneous membrane insertion of the bacteriophage Pf3 coat protein without topological control , 1999, The EMBO journal.

[25]  G. von Heijne,et al.  Proline-induced disruption of a transmembrane alpha-helix in its natural environment. , 1998, Journal of molecular biology.

[26]  D. Engelman,et al.  The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices. , 1992, Biochemistry.

[27]  Gunnar von Heijne,et al.  Competition between Sec‐ and TAT‐dependent protein translocation in Escherichia coli , 1999, The EMBO journal.

[28]  D C Rees,et al.  Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. , 1998, Science.

[29]  C. Duport,et al.  Yeast expressed cytochrome P450 2D6 (CYP2D6) exposed on the external face of plasma membrane is functionally competent. , 1998, Molecular pharmacology.

[30]  A Elofsson,et al.  Turns in transmembrane helices: determination of the minimal length of a "helical hairpin" and derivation of a fine-grained turn propensity scale. , 1999, Journal of molecular biology.

[31]  G. von Heijne,et al.  Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix. , 1998, Journal of molecular biology.

[32]  J. Rosenbusch,et al.  Folding pattern diversity of integral membrane proteins. , 1994, Science.

[33]  D. Lévy Membrane proteins which exhibit multiple topological orientations. , 1996, Essays in biochemistry.

[34]  D. Rees,et al.  Structure of the Escherichia coli fumarate reductase respiratory complex. , 1999, Science.

[35]  G von Heijne,et al.  Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. , 1993, The Journal of biological chemistry.

[36]  Jialing Lin,et al.  Both Lumenal and Cytosolic Gating of the Aqueous ER Translocon Pore Are Regulated from Inside the Ribosome during Membrane Protein Integration , 1997, Cell.

[37]  G. von Heijne,et al.  Breaking the camel's back: proline-induced turns in a model transmembrane helix. , 1998, Journal of molecular biology.

[38]  M. Chen,et al.  Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences. , 1999, Biochemistry.

[39]  A. Mant,et al.  Sec/SRP‐independent insertion of two thylakoid membrane proteins bearing cleavable signal peptides , 1998, FEBS letters.

[40]  S. Prusiner,et al.  Unusual topogenic sequence directs prion protein biogenesis. , 1990, Science.

[41]  G. Heijne Getting greasy: how transmembrane polypeptide segments integrate into the lipid bilayer. , 1997 .

[42]  G. von Heijne,et al.  Membrane Topology of the 60-kDa Oxa1p Homologue fromEscherichia coli * , 1998, The Journal of Biological Chemistry.

[43]  G. von Heijne,et al.  The Escherichia coli SRP and SecB targeting pathways converge at the translocon , 1998, The EMBO journal.

[44]  S. O. Smith,et al.  Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. , 1999, Biophysical journal.

[45]  D. Engelman,et al.  Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. , 1992, The Journal of biological chemistry.

[46]  Karl Edman,et al.  High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle , 1999, Nature.

[47]  J U Bowie,et al.  Helix packing in membrane proteins. , 1997, Journal of molecular biology.

[48]  G. von Heijne,et al.  Assembly of a cytoplasmic membrane protein in Escherichia coli is dependent on the signal recognition particle , 1996, FEBS letters.

[49]  D. Andrews,et al.  Negatively Charged Residues in the IgM Stop-Transfer Effector Sequence Regulate Transmembrane Polypeptide Integration* , 1999, The Journal of Biological Chemistry.

[50]  C. Robinson,et al.  The Sec-independent Twin-arginine Translocation System Can Transport Both Tightly Folded and Malfolded Proteins across the Thylakoid Membrane* , 1998, The Journal of Biological Chemistry.

[51]  L Hashemzadeh-Bonehi,et al.  Cleavable signal peptides are rarely found in bacterial cytoplasmic membrane proteins (review). , 1994, Molecular membrane biology.

[52]  P. S. Kim,et al.  Intermediates in the folding of the membrane protein bacteriorhodopsin , 1995, Nature Structural Biology.

[53]  G. Heijne Sec‐independent protein insertion into the inner E. coli membrane A phenomenon in search of an explanation , 1994 .

[54]  A. Le Berre,et al.  Topology inversion of CYP2D6 in the endoplasmic reticulum is not required for plasma membrane transport. , 1998, Molecular pharmacology.

[55]  G. Giordano,et al.  A novel Sec‐independent periplasmic protein translocation pathway in Escherichia coli , 1998, The EMBO journal.

[56]  J. Lanyi,et al.  Mechanism of Ion Transport across Membranes , 1997, The Journal of Biological Chemistry.

[57]  T. Fox,et al.  Mutations Affecting a Yeast Mitochondrial Inner Membrane Protein, Pnt1p, Block Export of a Mitochondrially Synthesized Fusion Protein from the Matrix , 1999, Molecular and Cellular Biology.

[58]  V. Goder,et al.  Glycosylation Can Influence Topogenesis of Membrane Proteins and Reveals Dynamic Reorientation of Nascent Polypeptides within the Translocon , 1999, The Journal of cell biology.

[59]  L. Hendershot,et al.  BiP Maintains the Permeability Barrier of the ER Membrane by Sealing the Lumenal End of the Translocon Pore before and Early in Translocation , 1998, Cell.

[60]  T. Fox,et al.  Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. , 1997, Molecular biology of the cell.

[61]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[62]  E. Bibi The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins. , 1998, Trends in biochemical sciences.

[63]  G von Heijne Principles of membrane protein assembly and structure. , 1996, Progress in biophysics and molecular biology.

[64]  C. Koehler,et al.  Different import pathways through the mitochondrial intermembrane space for inner membrane proteins , 1999, The EMBO journal.

[65]  W. Neupert,et al.  Transport of the ADP/ATP carrier of mitochondria from the TOM complex to the TIM22·54 complex , 1999, The EMBO journal.

[66]  P. Booth Folding α helical membrane proteins; kinetic studies on bacteriorhodopsin , 1997 .

[67]  Gunnar von Heijne,et al.  A Day in the Life of Dr K. or How I Learned to Stop Worrying and Love Lysozyme: a tragedy in six acts. , 1999 .

[68]  H. Bernstein,et al.  Membrane protein biogenesis: the exception explains the rules. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[69]  G. von Heijne Getting greasy: how transmembrane polypeptide segments integrate into the lipid bilayer , 1997, Molecular microbiology.

[70]  G. Heijne,et al.  Divergent evolution of membrane protein topology: the Escherichia coli RnfA and RnfE homologues. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[71]  R. Templer,et al.  Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer. , 1999, Biochemistry.

[72]  Q. Zhu,et al.  Membrane Topology and Cell Surface Targeting of Microsomal Epoxide Hydrolase , 1999, The Journal of Biological Chemistry.

[73]  W. Neupert,et al.  Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5 , 1998, Nature.

[74]  G. Heijne,et al.  Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor , 1997, Molecular microbiology.

[75]  B. Rost,et al.  Topology prediction for helical transmembrane proteins at 86% accuracy–Topology prediction at 86% accuracy , 1996, Protein science : a publication of the Protein Society.

[76]  W. Neupert,et al.  Oxa1p mediates the export of the N‐ and C‐termini of pCoxII from the mitochondrial matrix to the intermembrane space , 1997, FEBS letters.

[77]  G von Heijne,et al.  Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. , 1992, Journal of molecular biology.

[78]  Soo-Jung Kim,et al.  Sec-independent Insertion of Thylakoid Membrane Proteins , 1998, The Journal of Biological Chemistry.

[79]  Koreaki Ito The major pathways of protein translocation across membranes , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[80]  R. Herrmann,et al.  A new type of signal peptide: central role of a twin‐arginine motif in transfer signals for the delta pH‐dependent thylakoidal protein translocase. , 1995, The EMBO journal.

[81]  D. Andrews,et al.  The Cotranslational Integration of Membrane Proteins into the Phospholipid Bilayer Is a Multistep Process , 1996, Cell.

[82]  G. Heijne,et al.  Saccharomyces cerevisiae mitochondria lack a bacterial‐type Sec machinery , 1996, Protein science : a publication of the Protein Society.

[83]  S. Prusiner,et al.  Non-hydrophobic extracytoplasmic determinant of stop transfer in the prion protein , 1990, Nature.

[84]  B. Berks,et al.  Overlapping functions of components of a bacterial Sec‐independent protein export pathway , 1998, The EMBO journal.

[85]  B. Jungnickel,et al.  The Sec61 complex is essential for the insertion of proteins into the membrane of the endoplasmic reticulum , 1995, FEBS letters.

[86]  J. Bowie,et al.  A method for assessing the stability of a membrane protein. , 1997, Biochemistry.

[87]  T A Rapoport,et al.  Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. , 1996, Annual review of biochemistry.

[88]  R. Templer,et al.  Evidence that bilayer bending rigidity affects membrane protein folding. , 1997, Biochemistry.

[89]  G. von Heijne,et al.  The aromatic residues Trp and Phe have different effects on the positioning of a transmembrane helix in the microsomal membrane. , 1999, Biochemistry.

[90]  S. White,et al.  The preference of tryptophan for membrane interfaces. , 1998, Biochemistry.

[91]  S. Merchant,et al.  Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins , 1998, The EMBO journal.

[92]  M. Sansom Proline residues in transmembrane helices of channel and transport proteins: a molecular modelling study. , 1992, Protein engineering.

[93]  D. Engelman,et al.  Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[94]  H De Loof,et al.  Amphipathic helix motif: Classes and properties , 1990, Proteins.

[95]  A. Cooper,et al.  The NG domain of the prokaryotic signal recognition particle receptor, FtsY, is fully functional when fused to an unrelated integral membrane polypeptide. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[96]  D. Engelman,et al.  Sequence specificity in the dimerization of transmembrane alpha-helices. , 1992, Biochemistry.

[97]  A. Mant,et al.  A Monomeric, Tightly Folded Stromal Intermediate on the pH-dependent Thylakoidal Protein Transport Pathway (*) , 1995, The Journal of Biological Chemistry.

[98]  R. MacKinnon,et al.  The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. , 1999, Science.

[99]  H Luecke,et al.  Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. , 1999, Science.

[100]  G. von Heijne,et al.  YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase , 2000, The EMBO journal.

[101]  D. Engelman,et al.  Specificity and promiscuity in membrane helix interactions , 1994, Quarterly Reviews of Biophysics.

[102]  James H. Prestegard,et al.  A Transmembrane Helix Dimer: Structure and Implications , 1997, Science.

[103]  D. Engelman,et al.  Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain. , 1999, Journal of molecular biology.

[104]  B. Berks A common export pathway for proteins binding complex redox cofactors? , 1996, Molecular microbiology.

[105]  W. Neupert,et al.  Tim9, a new component of the TIM22·54 translocase in mitochondria , 1999, The EMBO journal.

[106]  Milton H. Saier,et al.  The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. , 1993 .

[107]  A. Driessen,et al.  Protein Targeting to the Bacterial Cytoplasmic Membrane , 1999, Microbiology and Molecular Biology Reviews.

[108]  M. Müller,et al.  The functional integration of a polytopic membrane protein of Escherichia coli is dependent on the bacterial signal-recognition particle. , 1995, European journal of biochemistry.

[109]  G von Heijne,et al.  A turn propensity scale for transmembrane helices. , 1999, Journal of molecular biology.

[110]  B. Wallace,et al.  Slow alpha helix formation during folding of a membrane protein. , 1997, Biochemistry.

[111]  Arne Elofsson,et al.  Architecture of helix bundle membrane proteins: An analysis of cytochrome c oxidase from bovine mitochondria , 1997, Protein science : a publication of the Protein Society.

[112]  G. von Heijne,et al.  The E. coli SRP: preferences of a targeting factor , 1997, FEBS letters.

[113]  Tilman Schirmer General and specific porins from bacterial outer membranes. , 1998, Journal of structural biology.

[114]  C. Wang,et al.  Dissection of de novo membrane insertion activities of internal transmembrane segments of ATP-binding-cassette transporters: toward understanding topological rules for membrane assembly of polytopic membrane proteins. , 1998, Molecular biology of the cell.

[115]  A. Driessen,et al.  The positive inside rule is not determined by the polarity of the Δψ , 1998, Molecular microbiology.

[116]  Sung-Hou Kim,et al.  Electron transfer by domain movement in cytochrome bc1 , 1998, Nature.

[117]  K. V. van Wijk,et al.  Evidence for SecA‐ and ΔpH‐independent insertion of D1 into thylakoids , 1995 .

[118]  W. Neupert,et al.  Topogenesis of inner membrane proteins of mitochondria. , 1996, Trends in biochemical sciences.

[119]  M. Finbow,et al.  Membrane insertion and assembly of ductin: a polytopic channel with dual orientations. , 1995, The EMBO journal.

[120]  K. Mihara,et al.  The amino‐terminal structures that determine topological orientation of cytochrome P‐450 in microsomal membrane. , 1990, The EMBO journal.

[121]  D. Engelman,et al.  TOXCAT: a measure of transmembrane helix association in a biological membrane. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[123]  D. Tollervey,et al.  Signal-sequence recognition by an Escherichia coli ribonucleoprotein complex , 1992, Nature.

[124]  S. Buchanan,et al.  Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. , 1999, Current opinion in structural biology.

[125]  Takashi Suzuki,et al.  Inversion of the Membrane Topology of SecG Coupled with SecA-Dependent Preprotein Translocation , 1996, Cell.

[126]  G. von Heijne,et al.  Distant Downstream Sequence Determinants Can Control N-tail Translocation during Protein Insertion into the Endoplasmic Reticulum Membrane* , 2000, The Journal of Biological Chemistry.

[127]  G. von Heijne A Day in the Life of Dr K. or How I Learned to Stop Worrying and Love Lysozyme: a tragedy in six acts. , 1999, Journal of molecular biology.

[128]  G. von Heijne,et al.  The Signal Recognition Particle-targeting Pathway Does Not Necessarily Deliver Proteins to the Sec-translocase inEscherichia coli * , 1999, The Journal of Biological Chemistry.

[129]  G von Heijne,et al.  Forced transmembrane orientation of hydrophilic polypeptide segments in multispanning membrane proteins. , 1998, Molecular cell.

[130]  G. Heijne,et al.  Sec‐independent translocation of a 100‐residue periplasmic N‐terminal tail in the E. coli inner membrane protein proW. , 1994, The EMBO journal.

[131]  D. Andrews,et al.  The role of the N region in signal sequence and signal-anchor function. , 1992, The Journal of biological chemistry.

[132]  D. Bush,et al.  Sec-independent protein translocation by the maize Hcf106 protein. , 1997, Science.

[133]  A. Seluanov,et al.  FtsY, the Prokaryotic Signal Recognition Particle Receptor Homologue, Is Essential for Biogenesis of Membrane Proteins* , 1997, The Journal of Biological Chemistry.

[134]  R. Hegde,et al.  Regulation of protein biogenesis at the endoplasmic reticulum membrane. , 1999, Trends in cell biology.

[135]  S. Prusiner,et al.  Determinants of carboxyl-terminal domain translocation during prion protein biogenesis. , 1994, The Journal of biological chemistry.

[136]  R. Mould,et al.  A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane. , 1991, The Journal of biological chemistry.

[137]  W. Neupert,et al.  N-terminal Tail Export from the Mitochondrial Matrix , 1999, The Journal of Biological Chemistry.

[138]  Richard H. Templer,et al.  Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer. , 1999 .

[139]  Gunnar von Heijne,et al.  Principles of membrane protein assembly and structure. , 1996 .

[140]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[141]  G von Heijne,et al.  Proline kinks in transmembrane alpha-helices. , 1991, Journal of molecular biology.

[142]  Jon Beckwith,et al.  Protein Translocation in the Three Domains of Life: Variations on a Theme , 1997, Cell.

[143]  G. von Heijne,et al.  SecA-independent Translocation of the Periplasmic N-terminal Tail of an Escherichia coli Inner Membrane Protein , 1995, The Journal of Biological Chemistry.

[144]  R. Herrmann,et al.  The presequence of a chimeric construct dictates which of two mechanisms are utilized for translocation across the thylakoid membrane: evidence for the existence of two distinct translocation systems. , 1994, The EMBO journal.

[145]  T. A. Link,et al.  Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. , 1998, Science.

[146]  S. Simon,et al.  Biogenesis of Polytopic Membrane Proteins: Membrane Segments Assemble within Translocation Channels prior to Membrane Integration , 1996, Cell.

[147]  N. Hoffman,et al.  Distinct “Assisted” and “Spontaneous” Mechanisms for the Insertion of Polytopic Chlorophyll-binding Proteins into the Thylakoid Membrane* , 1999, The Journal of Biological Chemistry.

[148]  Defeng Wu,et al.  Presence of functionally active cytochrome P‐450IIE1 in the plasma membrane of rat hepatocytes , 1992, Hepatology.

[149]  C. Koehler,et al.  Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. , 1998, Science.

[150]  G. von Heijne,et al.  N-tail translocation in a eukaryotic polytopic membrane protein: synergy between neighboring transmembrane segments. , 1999, European journal of biochemistry.

[151]  D. Engelman,et al.  Membrane protein folding and oligomerization: the two-stage model. , 1990, Biochemistry.

[152]  G. Reinhart,et al.  The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation , 1993, Cell.

[153]  T. Rapoport,et al.  Molecular Mechanism of Membrane Protein Integration into the Endoplasmic Reticulum , 1997, Cell.

[154]  J. Killian,et al.  Different Membrane Anchoring Positions of Tryptophan and Lysine in Synthetic Transmembrane α-Helical Peptides* , 1999, The Journal of Biological Chemistry.

[155]  H. Fritz,et al.  Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. , 1996, Journal of molecular biology.