Membrane fusion and exocytosis.

Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

[1]  R. Jahn,et al.  A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains , 1999, FEBS letters.

[2]  K. Fiebig,et al.  Folding intermediates of SNARE complex assembly , 1999, Nature Structural Biology.

[3]  R. Jahn,et al.  Reconstitution of regulated exocytosis in cell-free systems: a critical appraisal. , 1999, Annual review of physiology.

[4]  S. Wong,et al.  GS32, a novel Golgi SNARE of 32 kDa, interacts preferentially with syntaxin 6. , 1999, Molecular biology of the cell.

[5]  Jens R. Coorssen,et al.  Biochemical and Functional Studies of Cortical Vesicle Fusion: The SNARE Complex and Ca2+ Sensitivity , 1998, The Journal of cell biology.

[6]  J. Skehel,et al.  Coiled Coils in Both Intracellular Vesicle and Viral Membrane Fusion , 1998, Cell.

[7]  A. Brunger,et al.  Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Scheller,et al.  Three Novel Proteins of the Syntaxin/SNAP-25 Family* , 1998, The Journal of Biological Chemistry.

[9]  W. Wickner,et al.  Defining the functions of trans-SNARE pairs , 1998, Nature.

[10]  A. Mayer,et al.  Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion , 1998, Nature.

[11]  T. Weimbs,et al.  A model for structural similarity between different SNARE complexes based on sequence relationships. , 1998, Trends in cell biology.

[12]  J. Gerst,et al.  Involvement of Long Chain Fatty Acid Elongation in the Trafficking of Secretory Vesicles in Yeast , 1998, The Journal of cell biology.

[13]  I. Mellman,et al.  The Monomeric Guanosine Triphosphatase rab4 Controls an Essential Step on the Pathway of Receptor-mediated Antigen Processing in B Cells , 1998, The Journal of experimental medicine.

[14]  P. Hanson,et al.  Genetic and morphological analyses reveal a critical interaction between the C‐termini of two SNARE proteins and a parallel four helical arrangement for the exocytic SNARE complex , 1998, The EMBO journal.

[15]  T. Südhof,et al.  Mint 3: a ubiquitous mint isoform that does not bind to munc18-1 or -2. , 1998, European journal of cell biology.

[16]  J. Rothman,et al.  Arrangement of subunits in 20 S particles consisting of NSF, SNAPs, and SNARE complexes. , 1998, Molecular cell.

[17]  Kenneth M. Johnson,et al.  Mechanism of Action of rab3A in Mossy Fiber LTP , 1998, Neuron.

[18]  R. Epand,et al.  Effects of Spontaneous Bilayer Curvature on Influenza Virus–mediated Fusion Pores , 1998, The Journal of general physiology.

[19]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[20]  E. Matveeva,et al.  The effects of SNAP/SNARE complexes on the ATPase of NSF , 1998, FEBS letters.

[21]  Josep Ubach,et al.  Three-Dimensional Structure of an Evolutionarily Conserved N-Terminal Domain of Syntaxin 1A , 1998, Cell.

[22]  T. Südhof,et al.  A Tripartite Protein Complex with the Potential to Couple Synaptic Vesicle Exocytosis to Cell Adhesion in Brain , 1998, Cell.

[23]  M. Kozlov,et al.  A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. , 1998, Biophysical journal.

[24]  W. Xiao,et al.  The synaptic SNARE complex is a parallel four-stranded helical bundle , 1998, Nature Structural Biology.

[25]  Frederick M. Hughson,et al.  Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p , 1998, Nature Structural Biology.

[26]  A. Brünger,et al.  Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP , 1998, Nature Structural Biology.

[27]  R. Scheller,et al.  Tomosyn Binds t-SNARE Proteins via a VAMP-like Coiled Coil , 1998, Neuron.

[28]  S. Pfeffer,et al.  Rab GTPases, Directors of Vesicle Docking* , 1998, The Journal of Biological Chemistry.

[29]  W. Weis,et al.  Crystal Structure of the Hexamerization Domain of N-ethylmaleimide–Sensitive Fusion Protein , 1998, Cell.

[30]  H. Pelham,et al.  SNAREs and membrane fusion in the Golgi apparatus. , 1998, Biochimica et biophysica acta.

[31]  P S Kim,et al.  Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Martin,et al.  Docking and fusion in neurosecretion. , 1998, Current opinion in cell biology.

[33]  C. Kaiser,et al.  Transport from the endoplasmic reticulum to the Golgi. , 1998, Current opinion in cell biology.

[34]  S. Emr,et al.  Protein traffic in the yeast endocytic and vacuolar protein sorting pathways. , 1998, Current opinion in cell biology.

[35]  V. Malhotra,et al.  The organisation of the Golgi apparatus. , 1998, Current opinion in cell biology.

[36]  B. Tang,et al.  A 29-Kilodalton Golgi SolubleN-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (Vti1-rp2) Implicated in Protein Trafficking in the Secretory Pathway* , 1998, The Journal of Biological Chemistry.

[37]  S. D. Carlson,et al.  Temperature-Sensitive Paralytic Mutations Demonstrate that Synaptic Exocytosis Requires SNARE Complex Assembly and Disassembly , 1998, Neuron.

[38]  A. Chawla,et al.  A functional PtdIns(3)P-binding motif , 1998, Nature.

[39]  Marino Zerial,et al.  EEA1 links PI(3)K function to Rab5 regulation of endosome fusion , 1998, Nature.

[40]  L. Foster,et al.  Binary interactions of the SNARE proteins syntaxin-4, SNAP23, and VAMP-2 and their regulation by phosphorylation. , 1998, Biochemistry.

[41]  A. T. Brunger,et al.  Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. , 1998, Biochemistry.

[42]  C. Burd,et al.  Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. , 1998, Molecular cell.

[43]  Tao Xu,et al.  Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity , 1998, Nature Neuroscience.

[44]  S. High,et al.  Formation and turnover of NSF- and SNAP-containing "fusion" complexes occur on undocked, clathrin-coated vesicle-derived membranes. , 1998, Molecular biology of the cell.

[45]  M. C. de Lima,et al.  The influenza virus hemagglutinin: a model protein in the study of membrane fusion. , 1998, Biochimica et biophysica acta.

[46]  R. Scheller,et al.  Localization, Dynamics, and Protein Interactions Reveal Distinct Roles for ER and Golgi SNAREs , 1998, The Journal of cell biology.

[47]  W. Wickner,et al.  LMA1 Binds to Vacuoles at Sec18p (NSF), Transfers upon ATP Hydrolysis to a t-SNARE (Vam3p) Complex, and Is Released during Fusion , 1998, Cell.

[48]  Y. Shai,et al.  A synthetic all D-amino acid peptide corresponding to the N-terminal sequence of HIV-1 gp41 recognizes the wild-type fusion peptide in the membrane and inhibits HIV-1 envelope glycoprotein-mediated cell fusion. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[49]  T. Hohl,et al.  A Revised Model for the Oligomeric State of the N-Ethylmaleimide-sensitive Fusion Protein, NSF* , 1998, The Journal of Biological Chemistry.

[50]  T. Vida,et al.  The Vesicle Transport Protein Vps33p Is an ATP-binding Protein That Localizes to the Cytosol in an Energy-dependent Manner* , 1998, The Journal of Biological Chemistry.

[51]  J. Sodroski,et al.  The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. , 1998, Science.

[52]  W. Wickner,et al.  Vam7p, a vacuolar SNAP‐25 homolog, is required for SNARE complex integrity and vacuole docking and fusion , 1998, The EMBO journal.

[53]  S. Wong,et al.  Endobrevin, a novel synaptobrevin/VAMP-like protein preferentially associated with the early endosome. , 1998, Molecular biology of the cell.

[54]  M. Götte,et al.  A new beat for the SNARE drum. , 1998, Trends in cell biology.

[55]  T. Galli,et al.  A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. , 1998, Molecular biology of the cell.

[56]  M. Nonet,et al.  The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. , 1998, Molecular biology of the cell.

[57]  P. S. Kim,et al.  HIV Entry and Its Inhibition , 1998, Cell.

[58]  D. Sabatini,et al.  Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  W. Weissenhorn,et al.  The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. Novick,et al.  Tlg2p, a Yeast Syntaxin Homolog That Resides on the Golgi and Endocytic Structures* , 1998, The Journal of Biological Chemistry.

[61]  J. C. Hao,et al.  Protease Resistance of Syntaxin·SNAP-25·VAMP Complexes , 1998, The Journal of Biological Chemistry.

[62]  Akira Mizoguchi,et al.  Tomosyn: a Syntaxin-1–Binding Protein that Forms a Novel Complex in the Neurotransmitter Release Process , 1998, Neuron.

[63]  R. Scheller,et al.  Seven Novel Mammalian SNARE Proteins Localize to Distinct Membrane Compartments* , 1998, The Journal of Biological Chemistry.

[64]  R. Epand,et al.  Modulation of lipid polymorphism by the feline leukemia virus fusion peptide: implications for the fusion mechanism. , 1998, Biochemistry.

[65]  B. Tang,et al.  Syntaxin 11: a member of the syntaxin family without a carboxyl terminal transmembrane domain. , 1998, Biochemical and biophysical research communications.

[66]  C. Barlowe,et al.  Initial docking of ER‐derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins , 1998, The EMBO journal.

[67]  N. C. Price,et al.  Structural plasticity of the feline leukaemia virus fusion peptide: a circular dichroism study , 1998, FEBS letters.

[68]  P. Bronk,et al.  The Pathway of Membrane Fusion Catalyzed by Influenza Hemagglutinin: Restriction of Lipids, Hemifusion, and Lipidic Fusion Pore Formation , 1998, The Journal of cell biology.

[69]  B. Tang,et al.  Syntaxin 12, a Member of the Syntaxin Family Localized to the Endosome* , 1998, The Journal of Biological Chemistry.

[70]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[71]  R. Burgess,et al.  Distinct Requirements for Evoked and Spontaneous Release of Neurotransmitter Are Revealed by Mutations in theDrosophila Gene neuronal-synaptobrevin , 1998, The Journal of Neuroscience.

[72]  M. Latterich,et al.  Organelle Membrane Fusion: A Novel Function for the Syntaxin Homolog Ufe1p in ER Membrane Fusion , 1998, Cell.

[73]  Hisao Kondo,et al.  Syntaxin 5 Is a Common Component of the NSF- and p97-Mediated Reassembly Pathways of Golgi Cisternae from Mitotic Golgi Fragments In Vitro , 1998, Cell.

[74]  H. Stenmark,et al.  Syntaxin-16, a putative Golgi t-SNARE. , 1998, European journal of cell biology.

[75]  F. Goñi,et al.  Effect of single chain lipids on phospholipase C-promoted vesicle fusion. A test for the stalk hypothesis of membrane fusion. , 1998, Biochemistry.

[76]  M. Latterich,et al.  The AAA team: related ATPases with diverse functions. , 1998, Trends in cell biology.

[77]  T. Stevens,et al.  A Human Homolog Can Functionally Replace the Yeast Vesicle-associated SNARE Vti1p in Two Vesicle Transport Pathways* , 1998, The Journal of Biological Chemistry.

[78]  S. S. Lee,et al.  Molecular cloning and localization of human syntaxin 16, a member of the syntaxin family of SNARE proteins. , 1998, Biochemical and biophysical research communications.

[79]  S. Durell,et al.  Dilation of the Human Immunodeficiency Virus–1 Envelope Glycoprotein Fusion Pore Revealed by the Inhibitory Action of a Synthetic Peptide from gp41 , 1998, The Journal of cell biology.

[80]  B. Tang,et al.  Syntaxin 10: a member of the syntaxin family localized to the trans-Golgi network. , 1998, Biochemical and biophysical research communications.

[81]  H. Pelham,et al.  A Vacuolar v–t-SNARE Complex, the Predominant Form In Vivo and on Isolated Vacuoles, Is Disassembled and Activated for Docking and Fusion , 1998, The Journal of cell biology.

[82]  A. Neiman Prospore Membrane Formation Defines a Developmentally Regulated Branch of the Secretory Pathway in Yeast , 1998, The Journal of cell biology.

[83]  Yue Xu,et al.  Syntaxin 7, a Novel Syntaxin Member Associated with the Early Endosomal Compartment* , 1998, The Journal of Biological Chemistry.

[84]  Hongjuan Zhao,et al.  Synaptic Transmission Deficits in Caenorhabditis elegansSynaptobrevin Mutants , 1998, The Journal of Neuroscience.

[85]  J. Lear,et al.  Morphological changes and fusogenic activity of influenza virus hemagglutinin. , 1998, Biophysical journal.

[86]  H. Pollard,et al.  Synexin (annexin VII) hypothesis for Ca2+/GTP-regulated exocytosis. , 1998, Advances in pharmacology.

[87]  D. Loerke,et al.  The last few milliseconds in the life of a secretory granule , 1998, European Biophysics Journal.

[88]  H. Pelham,et al.  Two syntaxin homologues in the TGN/endosomal system of yeast , 1998, The EMBO journal.

[89]  J. Zimmerberg,et al.  Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[90]  W. Annaert,et al.  Export of Cellubrevin from the Endoplasmic Reticulum Is Controlled by BAP31 , 1997, The Journal of cell biology.

[91]  I. Waizenegger,et al.  The Arabidopsis KNOLLE Protein Is a Cytokinesis-specific Syntaxin , 1997, The Journal of cell biology.

[92]  T. Südhof,et al.  Mints, Munc18-interacting Proteins in Synaptic Vesicle Exocytosis* , 1997, The Journal of Biological Chemistry.

[93]  D. Dimitrov How Do Viruses Enter Cells? The HIV Coreceptors Teach Us a Lesson of Complexity , 1997, Cell.

[94]  M. Götte,et al.  Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell? , 1997, Trends in biochemical sciences.

[95]  H. Pelham EJCB-Lecture. SNAREs and the organization of the secretory pathway. , 1997, European journal of cell biology.

[96]  J. McNew,et al.  Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic. , 1997, Molecular biology of the cell.

[97]  R. Epand,et al.  The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. , 1997, Biophysical journal.

[98]  N. Ozaki,et al.  Noc2, a Putative Zinc Finger Protein Involved in Exocytosis in Endocrine Cells* , 1997, The Journal of Biological Chemistry.

[99]  R. Neve,et al.  Targeting of the Synaptic Vesicle Protein Synaptobrevin in the Axon of Cultured Hippocampal Neurons: Evidence for Two Distinct Sorting Steps , 1997, The Journal of cell biology.

[100]  K. Tan,et al.  Atomic structure of a thermostable subdomain of HIV-1 gp41. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[101]  R. Scheller,et al.  Structural Organization of the Synaptic Exocytosis Core Complex , 1997, Neuron.

[102]  S. Emr,et al.  A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. , 1997, Molecular biology of the cell.

[103]  H. Horvitz,et al.  Caenorhabditis elegans rab-3 Mutant Synapses Exhibit Impaired Function and Are Partially Depleted of Vesicles , 1997, The Journal of Neuroscience.

[104]  A T Brünger,et al.  Structural Changes Are Associated with Soluble N-Ethylmaleimide-sensitive Fusion Protein Attachment Protein Receptor Complex Formation* , 1997, The Journal of Biological Chemistry.

[105]  V. Subramaniam,et al.  A SNARE involved in protein transport through the Golgi apparatus , 1997, Nature.

[106]  J. Pevsner,et al.  Human syntaxin 7: a Pep12p/Vps6p homologue implicated in vesicle trafficking to lysosomes. , 1997, Gene.

[107]  R. Mandic,et al.  Tissue-specific alternative RNA splicing of rat vesicle-associated membrane protein-1 (VAMP-1). , 1997, Gene.

[108]  D. Langosch,et al.  Dimerization of the synaptic vesicle protein synaptobrevin (vesicle-associated membrane protein) II depends on specific residues within the transmembrane segment. , 1997, European journal of biochemistry.

[109]  G. Webb,et al.  Genetic interactions between a pep7 mutation and the PEP12 and VPS45 genes: evidence for a novel SNARE component in transport between the Saccharomyces cerevisiae Golgi complex and endosome. , 1997, Genetics.

[110]  B. Gähwiler,et al.  Ca2+ or Sr2+ Partially Rescues Synaptic Transmission in Hippocampal Cultures Treated with Botulinum Toxin A and C, But Not Tetanus Toxin , 1997, The Journal of Neuroscience.

[111]  H. Kouchi,et al.  The AtVAM3 Encodes a Syntaxin-related Molecule Implicated in the Vacuolar Assembly in Arabidopsis thaliana * , 1997, The Journal of Biological Chemistry.

[112]  A. Brünger,et al.  Formation of a yeast SNARE complex is accompanied by significant structural changes , 1997, FEBS letters.

[113]  Marino Zerial,et al.  A Novel Rab5 GDP/GTP Exchange Factor Complexed to Rabaptin-5 Links Nucleotide Exchange to Effector Recruitment and Function , 1997, Cell.

[114]  B. Sönnichsen,et al.  An isoform of the Golgi t-SNARE, syntaxin 5, with an endoplasmic reticulum retrieval signal. , 1997, Molecular biology of the cell.

[115]  D. Hammer,et al.  Interaction of the influenza hemagglutinin fusion peptide with lipid bilayers: area expansion and permeation. , 1997, Biophysical journal.

[116]  F. Hughson Enveloped viruses: A common mode of membrane fusion? , 1997, Current Biology.

[117]  S. Emr,et al.  A Multispecificity Syntaxin Homologue, Vam3p, Essential for Autophagic and Biosynthetic Protein Transport to the Vacuole , 1997, The Journal of cell biology.

[118]  S. Wong,et al.  GS15, a 15-Kilodalton Golgi SolubleN-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (SNARE) Homologous to rbet1* , 1997, The Journal of Biological Chemistry.

[119]  Reinhard Jahn,et al.  Structure and Conformational Changes in NSF and Its Membrane Receptor Complexes Visualized by Quick-Freeze/Deep-Etch Electron Microscopy , 1997, Cell.

[120]  Robert C. Malenka,et al.  Rab3A is essential for mossy fibre long-term potentiation in the hippocampus , 1997, Nature.

[121]  Thomas C. Südhof,et al.  Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion , 1997, Nature.

[122]  H. Horstmann,et al.  Transport, docking and exocytosis of single secretory granules in live chromaffin cells , 1997, Nature.

[123]  M. Whitaker,et al.  In vitro exocytosis in sea urchin eggs requires a synaptobrevin-related protein. , 1997, Journal of cell science.

[124]  J. Rothman,et al.  Ykt6p, a Prenylated SNARE Essential for Endoplasmic Reticulum-Golgi Transport* , 1997, The Journal of Biological Chemistry.

[125]  H. Ronne,et al.  Mso1p: a yeast protein that functions in secretion and interacts physically and genetically with Sec1p. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[126]  M. Götte,et al.  High expression of the yeast syntaxin‐related Vam3 protein suppresses the protein transport defects of a pep12 null mutant , 1997, FEBS letters.

[127]  Hisao Kondo,et al.  p47 is a cofactor for p97-mediated membrane fusion , 1997, Nature.

[128]  Terrian Dm,et al.  PHYLOGENETIC ANALYSIS OF MEMBRANE TRAFFICKING PROTEINS : A FAMILY REUNION AND SECONDARY STRUCTURE PREDICTIONS , 1997 .

[129]  S. Durell,et al.  What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review). , 1997, Molecular membrane biology.

[130]  R. Scheller,et al.  Syntaxin 6 functions in trans-Golgi network vesicle trafficking. , 1997, Molecular biology of the cell.

[131]  T. Stevens,et al.  The Yeast v-SNARE Vti1p Mediates Two Vesicle Transport Pathways through Interactions with the t-SNAREs Sed5p and Pep12p , 1997, The Journal of cell biology.

[132]  M. Tohyama,et al.  Cloning of a Putative Vesicle Transport-related Protein, RA410, from Cultured Rat Astrocytes and Its Expression in Ischemic Rat Brain* , 1997, The Journal of Biological Chemistry.

[133]  J. Gerst Conserved α-Helical Segments on Yeast Homologs of the Synaptobrevin/VAMP Family of v-SNAREs Mediate Exocytic Function* , 1997, The Journal of Biological Chemistry.

[134]  R. Epand,et al.  Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers. , 1997, Biochemistry.

[135]  T. Südhof,et al.  The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion , 1997, Nature.

[136]  P. Hanson,et al.  Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[137]  J. Rothman,et al.  ERS-24, a Mammalian v-SNARE Implicated in Vesicle Traffic between the ER and the Golgi , 1997, The Journal of cell biology.

[138]  F. Goñi,et al.  Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion. , 1997, Biophysical journal.

[139]  P. Hanson,et al.  Neurotransmitter release — four years of SNARE complexes , 1997, Current Opinion in Neurobiology.

[140]  A. Hirata,et al.  Vam3p, a new member of syntaxin related protein, is required for vacuolar assembly in the yeast Saccharomyces cerevisiae. , 1997, Journal of cell science.

[141]  C. Burd,et al.  A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast. , 1997, Molecular biology of the cell.

[142]  B. Lentz,et al.  Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. , 1997, Biochemistry.

[143]  Y. Shai,et al.  Fusion Peptides Derived from the HIV Type 1 Glycoprotein 41 Associate within Phospholipid Membranes and Inhibit Cell-Cell Fusion , 1997, The Journal of Biological Chemistry.

[144]  V. Lupashin,et al.  t-SNARE activation through transient interaction with a rab-like guanosine triphosphatase. , 1997, Science.

[145]  S. Harrison,et al.  Atomic structure of the ectodomain from HIV-1 gp41 , 1997, Nature.

[146]  J. Binley,et al.  The viral mousetrap , 1997, Nature.

[147]  H. Pelham,et al.  Homotypic vacuolar fusion mediated by t- and v-SNAREs , 1997, Nature.

[148]  R. Scheller,et al.  A fusion of new ideas , 1997, Nature.

[149]  Y. Shin,et al.  The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. , 1997, Journal of molecular biology.

[150]  J. Rayner,et al.  Transmembrane domain‐dependent sorting of proteins to the ER and plasma membrane in yeast , 1997, The EMBO journal.

[151]  R. Scheller,et al.  Protein Interactions Regulating Vesicle Transport between the Endoplasmic Reticulum and Golgi Apparatus in Mammalian Cells , 1997, Cell.

[152]  P. Bucher,et al.  A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[153]  N. Raikhel,et al.  The syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. , 1997, The Plant cell.

[154]  S. Vincent,et al.  Molecular cloning of a mammalian homologue of the yeast vesicular transport protein vps45. , 1997, Biochimica et biophysica acta.

[155]  T. Südhof Function of Rab3 GDP–GTP Exchange , 1997, Neuron.

[156]  T. Stevens,et al.  Identification of a Mammalian Golgi Sec1p-like Protein, mVps45* , 1997, The Journal of Biological Chemistry.

[157]  T. Südhof,et al.  DOC2 Proteins in Rat Brain: Complementary Distribution and Proposed Function as Vesicular Adapter Proteins in Early Stages of Secretion , 1997, Neuron.

[158]  R. Kelly,et al.  Effect of Mutations in Vesicle-Associated Membrane Protein (VAMP) on the Assembly of Multimeric Protein Complexes , 1997, The Journal of Neuroscience.

[159]  P. Lazo,et al.  Identification of two isoforms of the vesicle-membrane fusion protein SNAP-23 in human neutrophils and HL-60 cells. , 1997, Biochemical and biophysical research communications.

[160]  P. Scherer,et al.  Syndet is a novel SNAP-25 related protein expressed in many tissues. , 1997, Journal of cell science.

[161]  A. Mayer,et al.  Docking of Yeast Vacuoles Is Catalyzed by the Ras-like GTPase Ypt7p after Symmetric Priming by Sec18p (NSF) , 1997, The Journal of cell biology.

[162]  D. James,et al.  Novel isoform of syntaxin 1 is expressed in mammalian cells. , 1997, The Biochemical journal.

[163]  V. Olkkonen,et al.  Role of Rab GTPases in membrane traffic. , 1997, International review of cytology.

[164]  S. Emr,et al.  A Novel RING Finger Protein, Vps8p, Functionally Interacts with the Small GTPase, Vps21p, to Facilitate Soluble Vacuolar Protein Localization* , 1996, The Journal of Biological Chemistry.

[165]  C. Betzel,et al.  Crystallization and Preliminary X-ray Analysis of a Low Density Lipoprotein from Human Plasma* , 1996, The Journal of Biological Chemistry.

[166]  Subhas Banerjee,et al.  Apobec-1 Interacts with a 65-kDa Complementing Protein to Edit Apolipoprotein-B mRNA in Vitro * , 1996, The Journal of Biological Chemistry.

[167]  S. Durell,et al.  Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events , 1996, The Journal of cell biology.

[168]  R. Hay,et al.  Pyridoxal 5′-Phosphate Inhibition of Adenovirus DNA Polymerase* , 1996, The Journal of Biological Chemistry.

[169]  R. J. Barnard,et al.  Similar effects of α‐ and β‐SNAP on Ca 2+‐regulated exocytosis , 1996 .

[170]  R. Scheller,et al.  A New Syntaxin Family Member Implicated in Targeting of Intracellular Transport Vesicles* , 1996, Journal of Biological Chemistry.

[171]  K. Lohner,et al.  Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? , 1996, Chemistry and physics of lipids.

[172]  L. Chernomordik Non-bilayer lipids and biological fusion intermediates. , 1996, Chemistry and physics of lipids.

[173]  W. Balch,et al.  Mammalian Sly1 Regulates Syntaxin 5 Function in Endoplasmic Reticulum to Golgi Transport* , 1996, The Journal of Biological Chemistry.

[174]  P. Roche,et al.  Identification of a Novel Syntaxin- and Synaptobrevin/VAMP-binding Protein, SNAP-23, Expressed in Non-neuronal Tissues* , 1996, The Journal of Biological Chemistry.

[175]  T. Vorherr,et al.  H+-induced Membrane Insertion of Influenza Virus Hemagglutinin Involves the HA2 Amino-terminal Fusion Peptide but Not the Coiled Coil Region* , 1996, The Journal of Biological Chemistry.

[176]  M. D'Esposito,et al.  A synaptobrevin–like gene in the Xq28 pseudoautosomal region undergoes X inactivation , 1996, Nature Genetics.

[177]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[178]  S. Wong,et al.  GS28, a 28-Kilodalton Golgi SNARE That Participates in ER-Golgi Transport , 1996, Science.

[179]  C. Gray,et al.  Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers. , 1996, Biophysical journal.

[180]  J. Rothman,et al.  A v-SNARE implicated in intra-Golgi transport , 1996, The Journal of cell biology.

[181]  H. Pelham,et al.  SNARE-Mediated Retrograde Traffic from the Golgi Complex to the Endoplasmic Reticulum , 1996, Cell.

[182]  J. Rothman,et al.  Protein Sorting by Transport Vesicles , 1996, Science.

[183]  A. Mayer,et al.  Sec18p (NSF)-Driven Release of Sec17p (α-SNAP) Can Precede Docking and Fusion of Yeast Vacuoles , 1996, Cell.

[184]  S. Emr,et al.  Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. , 1996, Molecular biology of the cell.

[185]  K. Klotz,et al.  Membrane Asymmetry Is Maintained during Influenza-induced Fusion (*) , 1996, The Journal of Biological Chemistry.

[186]  R. Kelly,et al.  Endocytosis of VAMP is facilitated by a synaptic vesicle targeting signal , 1996, The Journal of cell biology.

[187]  T. Südhof,et al.  Distinct Ca-dependent Properties of the First and Second C-domains of Synaptotagmin I (*) , 1996, The Journal of Biological Chemistry.

[188]  J. Ruysschaert,et al.  Lipid membrane fusion induced by the human immunodeficiency virus type 1 gp41 N-terminal extremity is determined by its orientation in the lipid bilayer , 1996, Journal of virology.

[189]  P. S. Kim,et al.  Retrovirus envelope domain at 1.7 angstrom resolution. , 1996, Nature structural biology.

[190]  T. Wolfsberg,et al.  Virus-cell and cell-cell fusion. , 1996, Annual review of cell and developmental biology.

[191]  R. Scheller,et al.  Mammalian homologues of yeast vacuolar protein sorting (vps) genes implicated in Golgi-to-lysosome trafficking. , 1996, Gene.

[192]  R. Scheller,et al.  A mammalian homologue of SLY1, a yeast gene required for transport from endoplasmic reticulum to Golgi. , 1996, Gene.

[193]  T. McMahon,et al.  Overexpression of ε-Protein Kinase C Enhances Nerve Growth Factor-induced Phosphorylation of Mitogen-activated Protein Kinases and Neurite Outgrowth (*) , 1995, The Journal of Biological Chemistry.

[194]  J. Rothman,et al.  A possible docking and fusion particle for synaptic transmission , 1995, Nature.

[195]  T. Stegmann,et al.  Inhibition of Influenza-induced Membrane Fusion by Lysophosphatidylcholine (*) , 1995, The Journal of Biological Chemistry.

[196]  A. Bernstein,et al.  Each Domain of the N-Ethylmaleimide-sensitive Fusion Protein Contributes to Its Transport Activity (*) , 1995, The Journal of Biological Chemistry.

[197]  M. Zerial,et al.  Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion , 1995, Cell.

[198]  G. Schiavo,et al.  Structure and function of tetanus and botulinum neurotoxins , 1995, Quarterly Reviews of Biophysics.

[199]  T. Südhof,et al.  Distinct Ca2+ and Sr2+ Binding Properties of Synaptotagmins , 1995, The Journal of Biological Chemistry.

[200]  P. Hanson,et al.  Ca2+ Regulates the Interaction between Synaptotagmin and Syntaxin 1 (*) , 1995, The Journal of Biological Chemistry.

[201]  V. O'Connor,et al.  Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion. , 1995, The EMBO journal.

[202]  U. Acharya,et al.  The formation of golgi stacks from vesiculated golgi membranes requires two distinct fusion events , 1995, Cell.

[203]  R. Schekman,et al.  Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes , 1995, Cell.

[204]  J. Zimmerberg,et al.  Bending membranes to the task: structural intermediates in bilayer fusion. , 1995, Current opinion in structural biology.

[205]  N. Raikhel,et al.  An Arabidopsis syntaxin homologue isolated by functional complementation of a yeast pep12 mutant. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[206]  P. Hanson,et al.  Poisoning by botulinum neurotoxin A does not inhibit formation or disassembly of the synaptosomal fusion complex. , 1995, Biochemical and biophysical research communications.

[207]  P. Hanson,et al.  The N-Ethylmaleimide-sensitive Fusion Protein and α-SNAP Induce a Conformational Change in Syntaxin (*) , 1995, The Journal of Biological Chemistry.

[208]  A. Nakano,et al.  STT10, a novel class-D VPS yeast gene required for osmotic integrity related to the PKC1/STT1 protein kinase pathway. , 1995, Gene.

[209]  R. Ruigrok,et al.  Low-pH induced conformational changes in viral fusion proteins: implications for the fusion mechanism. , 1995, The Journal of general virology.

[210]  K. Sakimura,et al.  Identification of four different forms of syntaxin 3. , 1995, Biochemical and biophysical research communications.

[211]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[212]  Thomas C. Südhof,et al.  Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins , 1995, Nature.

[213]  T. Südhof,et al.  A Novel Ubiquitous Form of Munc-18 Interacts with Multiple Syntaxins. , 1995, The Journal of Biological Chemistry.

[214]  S. Catsicas,et al.  Ultrastructural localization of SNAP‐25 within the rat spinal cord and peripheral nervous system , 1995, The Journal of comparative neurology.

[215]  R. Kelly,et al.  A targeting signal in VAMP regulating transport to synaptic vesicles , 1995, Cell.

[216]  S. Nauenburg,et al.  Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. , 1995, The EMBO journal.

[217]  R. Scheller,et al.  Distinct domains of syntaxin are required for synaptic vesicle fusion complex formation and dissociation , 1995, Neuron.

[218]  D. James,et al.  Molecular Identification of Two Novel Munc-18 Isoforms Expressed in Non-neuronal Tissues (*) , 1995, The Journal of Biological Chemistry.

[219]  R. Jahn,et al.  The t-SNAREs syntaxin 1 and SNAP-25 are present on organelles that participate in synaptic vesicle recycling , 1995, The Journal of cell biology.

[220]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[221]  J. Skehel,et al.  Electron microscopy of antibody complexes of influenza virus haemagglutinin in the fusion pH conformation. , 1995, The EMBO journal.

[222]  T A Rapoport,et al.  Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. , 1995, The EMBO journal.

[223]  R. Blumenthal,et al.  Transient domains induced by influenza haemagglutinin during membrane fusion. , 1995, Molecular membrane biology.

[224]  J. R. Monck,et al.  The exocytotic fusion pore interface: a model of the site of neurotransmitter release. , 1995, Molecular membrane biology.

[225]  W. Almers,et al.  Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. , 1995, Current opinion in cell biology.

[226]  J. Zimmerberg,et al.  Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion , 1994, The Journal of cell biology.

[227]  T. Stevens,et al.  Yeast Vps45p is a Sec1p-like protein required for the consumption of vacuole-targeted, post-Golgi transport vesicles. , 1994, European journal of cell biology.

[228]  P. De Camilli,et al.  Localization of Rab5 to synaptic vesicles identifies endosomal intermediate in synaptic vesicle recycling pathway. , 1994, European journal of cell biology.

[229]  R. Burgoyne,et al.  The ATPase activity of N-ethylmaleimide-sensitive fusion protein (NSF) is regulated by soluble NSF attachment proteins. , 1994, The Journal of biological chemistry.

[230]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[231]  N. Barton,et al.  SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. , 1994, The Journal of biological chemistry.

[232]  J. Rothman,et al.  Mechanisms of intracellular protein transport , 1994, Nature.

[233]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[234]  P. Brennwald,et al.  Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis , 1994, Cell.

[235]  T. Matthews,et al.  Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[236]  H. Pelham,et al.  Localization of Sed5, a putative vesicle targeting molecule, to the cis- Golgi network involves both its transmembrane and cytoplasmic domains , 1994, The Journal of cell biology.

[237]  T. Südhof,et al.  Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C , 1994, Neuron.

[238]  J. Rothman,et al.  A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles , 1994, Cell.

[239]  G. Rubin,et al.  Mutations in the drosophila Rop gene suggest a function in general secretion and synaptic transmission , 1994, Neuron.

[240]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[241]  J. Rothman,et al.  N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion , 1994, The Journal of cell biology.

[242]  Jonathan Pevsner,et al.  Specificity and regulation of a synaptic vesicle docking complex , 1994, Neuron.

[243]  Reinhard Jahn,et al.  Vesicle fusion from yeast to man , 1994, Nature.

[244]  G. Semenza,et al.  Evidence for H(+)-induced insertion of influenza hemagglutinin HA2 N-terminal segment into viral membrane. , 1994, The Journal of biological chemistry.

[245]  M. Zerial,et al.  The involvement of the small GTP-binding protein Rab5a in neuronal endocytosis , 1994, Neuron.

[246]  Thomas C. Südhof,et al.  The role of Rab3A in neurotransmitter release , 1994, Nature.

[247]  T. Stegmann Membrane Fusion: Anchors aweigh , 1994, Current Biology.

[248]  E. Kandel,et al.  Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[249]  M. Colombo,et al.  Structural features of the GTP-binding defective Rab5 mutants required for their inhibitory activity on endocytosis. , 1994, The Journal of biological chemistry.

[250]  R. Jahn,et al.  Clostridial neurotoxins: new tools for dissecting exocytosis. , 1994, Trends in cell biology.

[251]  T. Südhof,et al.  Rab3C is a synaptic vesicle protein that dissociates from synaptic vesicles after stimulation of exocytosis. , 1994, The Journal of biological chemistry.

[252]  I. Macara,et al.  Evidence for the involvement of Rab3A in Ca(2+)-dependent exocytosis from adrenal chromaffin cells. , 1994, The Journal of biological chemistry.

[253]  P. Philippsen,et al.  Role of three rab5-like GTPases, Ypt51p, Ypt52p, and Ypt53p, in the endocytic and vacuolar protein sorting pathways of yeast , 1994, The Journal of cell biology.

[254]  P. Novick,et al.  GDI1 encodes a GDP dissociation inhibitor that plays an essential role in the yeast secretory pathway. , 1994, EMBO Journal.

[255]  P. De Camilli,et al.  A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[256]  S. Emr,et al.  VPS21 encodes a rab5‐like GTP binding protein that is required for the sorting of yeast vacuolar proteins. , 1994, The EMBO journal.

[257]  R. Scheller,et al.  Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. , 1994, Science.

[258]  R. Scheller,et al.  n-Sec1: a neural-specific syntaxin-binding protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[259]  Judith M. White,et al.  Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion , 1994, Cell.

[260]  T. Südhof,et al.  Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. , 1994, The Journal of biological chemistry.

[261]  D. Faber,et al.  The one-vesicle hypothesis and multivesicular release. , 1994, Advances in second messenger and phosphoprotein research.

[262]  T. Südhof,et al.  A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. , 1993, The Journal of biological chemistry.

[263]  R. Jahn,et al.  Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC‐1/syntaxin. , 1993, The EMBO journal.

[264]  T. Südhof,et al.  Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin , 1993, Nature.

[265]  P. Brennwald,et al.  Friends and family: The role of the rab GTPases in vesicular traffic , 1993, Cell.

[266]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[267]  H. Ronne,et al.  Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. , 1993, The EMBO journal.

[268]  D. Siegel,et al.  Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. , 1993, Biophysical journal.

[269]  T. Südhof,et al.  Membrane fusion machinery: Insights from synaptic proteins , 1993, Cell.

[270]  Hugo J. Bellen,et al.  Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release , 1993, Cell.

[271]  R. Scheller,et al.  The syntaxin family of vesicular transport receptors , 1993, Cell.

[272]  P. Novick,et al.  Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae , 1993, Cell.

[273]  Thomas C. Südhof,et al.  Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25 , 1993, Nature.

[274]  T. Sasaki,et al.  Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins. , 1993, The Journal of biological chemistry.

[275]  T. Südhof,et al.  Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein , 1993, Nature.

[276]  P. S. Kim,et al.  A spring-loaded mechanism for the conformational change of influenza hemagglutinin , 1993, Cell.

[277]  W. Almers,et al.  Membrane flux through the pore formed by a fusogenic viral envelope protein during cell fusion , 1993, The Journal of cell biology.

[278]  K. Kaibuchi,et al.  Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin , 1993, Molecular and cellular biology.

[279]  R. Scheller,et al.  The molecular machinery for secretion is conserved from yeast to neurons. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[280]  J. Rothman,et al.  SNAP family of NSF attachment proteins includes a brain-specific isoform , 1993, Nature.

[281]  J. Rothman,et al.  Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. , 1993, The Journal of biological chemistry.

[282]  Steven S. Vogel,et al.  Mechanisms of membrane fusion. , 1993, Annual review of biophysics and biomolecular structure.

[283]  Steven S. Vogel,et al.  Calcium-triggered fusion of exocytotic granules requires proteins in only one membrane. , 1992, The Journal of biological chemistry.

[284]  Ludger Hengst,et al.  Endocytosis in yeast: Evidence for the involvement of a small GTP-binding protein (Ypt7p) , 1992, Cell.

[285]  J. H. Chou,et al.  Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin proteolysis. , 1992, Biochemical and biophysical research communications.

[286]  J. Skene,et al.  The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[287]  C. Der,et al.  GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex , 1992, The Journal of cell biology.

[288]  H. Pelham,et al.  SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex , 1992, The Journal of cell biology.

[289]  F. Benfenati,et al.  Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. , 1992, EMBO Journal.

[290]  Y. Anraku,et al.  Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. II. VAM7, a gene for regulating morphogenic assembly of the vacuoles. , 1992, The Journal of biological chemistry.

[291]  R. Schekman Genetic and biochemical analysis of vesicular traffic in yeast , 1992, Current Biology.

[292]  R. Holz,et al.  Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. , 1992, The Journal of biological chemistry.

[293]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[294]  J. Rothman,et al.  Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPs) bind to a multi-SNAP receptor complex in Golgi membranes. , 1992, The Journal of biological chemistry.

[295]  K. Akagawa,et al.  Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. , 1992, The Journal of biological chemistry.

[296]  M. Wigler,et al.  SNC1, a yeast homolog of the synaptic vesicle-associated membrane protein/synaptobrevin gene family: genetic interactions with the RAS and CAP genes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[297]  T. Südhof,et al.  Synaptotagmin: a calcium sensor on the synaptic vesicle surface. , 1992, Science.

[298]  M. Takeichi,et al.  Epimorphin: A mesenchymal protein essential for epithelial morphogenesis , 1992, Cell.

[299]  J. Rothman,et al.  A multisubunit particle implicated in membrane fusion , 1992, The Journal of cell biology.

[300]  R. Hosono,et al.  The unc‐18 Gene Encodes a Novel Protein Affecting the Kinetics of Acetylcholine Metabolism in the Nematode Caenorhabditis elegans , 1992, Journal of neurochemistry.

[301]  L. Ruohonen,et al.  Cloning and sequencing of the yeast Saccharomyces cerevisiae SEC1 gene localized on chromosome IV , 1991, Yeast.

[302]  R. Schekman,et al.  Vesicle-mediated protein sorting. , 1992, Annual review of biochemistry.

[303]  F. Richards,et al.  The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. , 1991, The Journal of biological chemistry.

[304]  D. Gallwitz,et al.  The yeast SLY gene products, suppressors of defects in the essential GTP-binding Ypt1 protein, may act in endoplasmic reticulum-to-Golgi transport , 1991, Molecular and cellular biology.

[305]  S. Ferro-Novick,et al.  The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast , 1991, The Journal of cell biology.

[306]  D. Gallwitz,et al.  Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily , 1991, Molecular and cellular biology.

[307]  J. Alouf,et al.  Sourcebook of bacterial protein toxins , 1991 .

[308]  J. Skehel,et al.  Refinement of the influenza virus hemagglutinin by simulated annealing. , 1991, Journal of molecular biology.

[309]  S. Emr,et al.  Characterization of yeast Vps33p, a protein required for vacuolar protein sorting and vacuole biogenesis. , 1990, Molecular and cellular biology.

[310]  S. Ferro-Novick,et al.  BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex , 1990, Molecular and cellular biology.

[311]  W. Almers,et al.  Transmitter release from synapses: Does a preassembled fusion pore initiate exocytosis? , 1990, Neuron.

[312]  J. Rothman,et al.  SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast , 1990, Cell.

[313]  Y. Anraku,et al.  The SLP1 gene of Saccharomyces cerevisiae is essential for vacuolar morphogenesis and function , 1990, Molecular and cellular biology.

[314]  F E Bloom,et al.  The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations , 1989, The Journal of cell biology.

[315]  W. Almers,et al.  Patch clamp studies of single cell-fusion events mediated by a viral fusion protein , 1989, Nature.

[316]  R. Scheller,et al.  Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. , 1989, The Journal of biological chemistry.

[317]  E. Chen,et al.  A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast , 1989, Nature.

[318]  G. Semenza,et al.  Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the "fusion peptide". , 1989, The Journal of biological chemistry.

[319]  P. De Camilli,et al.  Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. , 1989, The EMBO journal.

[320]  H. Delacroix,et al.  Cubic phases of lipid-containing systems. Structure analysis and biological implications. , 1988, Journal of molecular biology.

[321]  R. Scheller,et al.  VAMP-1: a synaptic vesicle-associated integral membrane protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[322]  D. Botstein,et al.  The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery , 1988, Cell.

[323]  M. Kozlov,et al.  Membrane fusion: overcoming of the hydration barrier and local restructuring. , 1987, Journal of theoretical biology.

[324]  P. Novick,et al.  A ras-like protein is required for a post-Golgi event in yeast secretion , 1987, Cell.

[325]  J. Skehel,et al.  The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. , 1987, Annual review of biochemistry.

[326]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[327]  R. Schekman,et al.  Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway , 1980, Cell.

[328]  S. Marčelja,et al.  Physical principles of membrane organization , 1980, Quarterly Reviews of Biophysics.