Temperature-induced structure reconstruction to prepare thermally stable single-atom Pt catalyst.

Single-atom noble metal on catalyst support tend to migrate and agglomerate into nanoparticles due to high surface free energy at elevated temperatures. Temperature-induced structure reconstruction of support can firmly anchor single-atom Pt species to adapt high temperature environment. We used Mn 3 O 4 as a restructurable support to load single-atom Pt and further turned into single-atom Pt-on-Mn 2 O 3 catalyst via high-temperature treatment, which is extremely stable under calcination conditions of 800 o C for 5 days in humid air. Experiments reveal that high valence Pt 4+ with more covalent bonds on Mn 2 O 3 are essential for anchoring isolated Pt atoms by strong interaction. Optimized catalyst by moderate H 2 O 2 etching exhibits the best catalytic performance and the excellent thermal stability of single-atom Pt in high-temperature CH 4 oxidation on account of more exposed Pt atoms and strong Pt-Mn 2 O 3 interaction.

[1]  Jing Chen,et al.  Incorporating Mn cation as anchor to atomically disperse Pt on TiO2 for low-temperature removal of formaldehyde , 2019 .

[2]  Pengyi Zhang,et al.  One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures , 2019, Applied Catalysis B: Environmental.

[3]  S. Oh,et al.  Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms , 2019, Nature Communications.

[4]  N. López,et al.  Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts , 2019, Nature Materials.

[5]  Xue-qing Gong,et al.  Ultrathin Metal-Organic Framework Nanosheets with Ultrahigh Loading of Single Pt Atoms for Efficient Visible-Light-Driven Photocatalytic H2 Evolution. , 2019, Angewandte Chemie.

[6]  Xue-qing Gong,et al.  Ultrathin Metal–Organic Framework Nanosheets with Ultrahigh Loading of Single Pt Atoms for Efficient Visible‐Light‐Driven Photocatalytic H 2 Evolution , 2019, Angewandte Chemie.

[7]  Gianfranco Pacchioni,et al.  Structural evolution of atomically dispersed Pt catalysts dictates reactivity , 2019, Nature Materials.

[8]  Xue-qing Gong,et al.  Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports , 2019, Nature Communications.

[9]  Qinghua Zhang,et al.  Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. , 2019, Journal of the American Chemical Society.

[10]  A. Datye,et al.  Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support , 2019, ACS Catalysis.

[11]  Tao Zhang,et al.  Non defect-stabilized thermally stable single-atom catalyst , 2019, Nature Communications.

[12]  Ze Zhang,et al.  Direct In Situ TEM Visualization and Insight into the Facet-Dependent Sintering Behaviors of Gold on TiO2. , 2018, Angewandte Chemie.

[13]  Qinghua Zhang,et al.  Direct observation of noble metal nanoparticles transforming to thermally stable single atoms , 2018, Nature Nanotechnology.

[14]  Tao Zhang,et al.  Heterogeneous single-atom catalysis , 2018, Nature Reviews Chemistry.

[15]  Avelino Corma,et al.  Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles , 2018, Chemical reviews.

[16]  D. Su,et al.  Nanoceria-Supported Single-Atom Platinum Catalysts for Direct Methane Conversion , 2018 .

[17]  J. Chen,et al.  A Novel Redox Precipitation to Synthesize Au-Doped α-MnO2 with High Dispersion toward Low-Temperature Oxidation of Formaldehyde. , 2018, Environmental science & technology.

[18]  Michelle H. Wiebenga,et al.  Thermally stable single-atom platinum-on-ceria catalysts via atom trapping , 2016, Science.

[19]  F. Negreiros,et al.  Creating single-atom Pt-ceria catalysts by surface step decoration , 2016, Nature Communications.

[20]  J. Thomas Catalysis: Tens of thousands of atoms replaced by one , 2015, Nature.

[21]  Jörg Libuda,et al.  Auf dem Weg zu größtmöglicher Effizienz bei der katalytischen Nutzung von Edelmetallen: atomar dispergiertes Oberflächen‐Platin , 2014 .

[22]  Konstantin M. Neyman,et al.  Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. , 2014, Angewandte Chemie.

[23]  Tao Zhang,et al.  Single-atom catalysts: a new frontier in heterogeneous catalysis. , 2013, Accounts of chemical research.

[24]  Sivakumar R. Challa,et al.  Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? , 2013, Accounts of chemical research.

[25]  Xiaofeng Yang,et al.  Single-atom catalysis of CO oxidation using Pt1/FeOx. , 2011, Nature chemistry.

[26]  Ž. Šljivančanin,et al.  Transition from Mn(4+) to Mn(3+) induced by surface reconstruction at λ-MnO(2)(001). , 2010, The Journal of chemical physics.

[27]  R. Schlögl,et al.  Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions , 2006 .