Metabolic networks analysis using convex optimization

Metabolic networks map the biochemical reactions in a living cell to the flow of various chemical substances in the cell, which are called metabolites. A standard model of a metabolic network is given as a linear map from the reaction rates to the change in metabolites concentrations. We study two problems related to the analysis of metabolic networks, the minimal network problem and the minimal knockout problem.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  B. Palsson,et al.  Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants , 2005, Journal of bacteriology.

[3]  E. Ruppin,et al.  Regulatory on/off minimization of metabolic flux changes after genetic perturbations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[5]  F. Blattner,et al.  In silico design and adaptive evolution of Escherichia coli for production of lactic acid. , 2005, Biotechnology and bioengineering.

[6]  Calin Belta,et al.  Exploiting the pathway structure of metabolism to reveal high-order epistasis , 2008, BMC Systems Biology.

[7]  A. Papachristodoulou,et al.  Determining Interconnections in Chemical Reaction Networks , 2007, 2007 American Control Conference.

[8]  Pamela A Silver,et al.  Defossiling fuel: how synthetic biology can transform biofuel production. , 2008, ACS chemical biology.

[9]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[10]  B. Palsson,et al.  Metabolic modelling of microbes: the flux-balance approach. , 2002, Environmental microbiology.

[11]  A. Burgard,et al.  Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. , 2001, Biotechnology and bioengineering.

[12]  A. Burgard,et al.  Minimal Reaction Sets for Escherichia coli Metabolism under Different Growth Requirements and Uptake Environments , 2001, Biotechnology progress.

[13]  Steffen Klamt,et al.  Minimal cut sets in biochemical reaction networks , 2004, Bioinform..

[14]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[15]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[16]  Ádám M. Halász,et al.  Investigating metabolite essentiality through genome-scale analysis of Escherichia coli production capabilities , 2005, Bioinform..

[17]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[18]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[19]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[20]  G. Stephanopoulos,et al.  Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. , 2005, Metabolic engineering.

[21]  George J. Pappas,et al.  Genetic network identification using convex programming. , 2009, IET systems biology.

[22]  Calin Belta,et al.  Systematic analysis of conservation relations in Escherichia coli genome-scale metabolic network reveals novel growth media. , 2006, Biophysical journal.

[23]  S. Klamt,et al.  Generalized concept of minimal cut sets in biochemical networks. , 2006, Bio Systems.

[24]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[25]  B. Palsson,et al.  Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates , 1993, Applied and environmental microbiology.

[26]  G.J. Pappas,et al.  Identification of stable genetic networks using convex programming , 2008, 2008 American Control Conference.

[27]  E. Ruppin,et al.  Multiple knockout analysis of genetic robustness in the yeast metabolic network , 2006, Nature Genetics.

[28]  Kwang-Hyun Cho,et al.  Inferring biomolecular interaction networks based on convex optimization , 2007, Comput. Biol. Chem..