Estimation of the standard molal heat capacities, entropies and volumes of 2:1 clay minerals

Abstract The dearth of accurate values of the thermodynamic properties of 2:1 clay minerals severely hampers interpretation of their phase relations, the design of critical laboratory experiments and geologically realistic computer calculations of mass transfer in weathering, diagenetic and hydrothermal systems. Algorithms and strategies are described below for estimating to within 2% the standard molal heat capacities, entropies, and volumes of illites, smectites and other 2:1 clay minerals. These techniques can also be used to estimate standard molal thermodynamic properties of fictive endmembers of clay mineral solid solutions. Because 2:1 clay minerals like smectite and vermiculite are always hydrated to some extent in nature, contribution of interlayer H2O to their thermodynamic properties is considered explicitly in the estimation of the standard molal heat capacities, entropies, and volumes of these minerals. Owing to the lack of accurate calorimetric data from which reliable values of the standard molal heat capacity and entropy of interlayer H2O can be retrieved, these properties were taken in a first approximation to be equal to those of zeolitic H2O in analcite. The resulting thermodynamic contributions per mole of interlayer H2O to the standard molal heat capacity, entropy, and volume of hydrous clay minerals at 1 bar and 25°C are 11.46 cal mol−1, 13.15 cal mol−1 K−1 and 17.22 cm3 mol, respectively. Estimated standard molal heat capacities, entropies and volumes are given for a suite of smectites and illites commonly used in models of clay mineral and shale diagenesis.

[1]  H. Nesbitt Estimation of the thermodynamic properties of Na- Ca- and Mg- beidellites , 1977 .

[2]  H. Flotow,et al.  Thermodynamic studies of zeolites: analcime and dehydrated analcime , 1982 .

[3]  G. Brindley,et al.  Crystal Structures of Clay Minerals and their X-ray Identification , 1982 .

[4]  D. Peacor,et al.  Crystal chemistry of a metamorphic biotite and its significance in water barometry , 1980 .

[5]  E. Oldfield,et al.  High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals , 1985 .

[6]  J. Donald Rimstidt,et al.  Estimating the thermodynamic properties (Δ Gof and Δ Hof ) of silicate minerals at 298 K from the sum of polyhedral contributions , 1989 .

[7]  J. R. Fisher,et al.  Simultaneous evaluation and correlation of thermodynamic data , 1976 .

[8]  M. R. Karlinger,et al.  Chemistry of Illite/Smectite and End-Member Illite , 1986 .

[9]  R. M. Barrer,et al.  Non-stoichiometric hydrates—III: The relative importance of cations and of anionic framework in determining the energetics of zeolitic water , 1960 .

[10]  D. C. Bain,et al.  Composition of Some Smectites and Diagenetic Illitic Clays and Implications for their Origin , 1986 .

[11]  L. G. Schultz,et al.  Mixed-Layer Kaolinite—Montmorillonite from the Yucatan Peninsula, Mexico , 1971 .

[12]  J. Hower,et al.  The mineralogy of illites and mixed-layer illite/montmorillonites , 1966 .

[13]  H. Lechert,et al.  Molwärmemessungen an adsorbiertem Wasser im Zeolithen Linde 13 X , 1972 .

[14]  G. Sposito,et al.  Improved method for estimating the standard free energies of formation (ΔGf,298.150) of smectites , 1978 .

[15]  R. A. Robie,et al.  Thermodynamic properties of zeolites; low-temperature heat capacities and thermodynamic functions for phillipsite and clinoptilolite; estimates of the thermochemical properties of zeolitic water at low temperature , 1984 .

[16]  A. V. Kiselev,et al.  Heats of adsorption of water vapour on X-zeolites containing Li+, Na+, K+, Rb+, and Cs+ cations , 1971 .

[17]  R. Keren,et al.  Water Vapor Isotherms and Heat of Immersion of Na/Ca-Montmorillonite Systems—I: Homoionic Clay , 1975 .

[18]  A. V. Kiselev,et al.  Spectral and energetic aspects of water adsorption by Li-, Na-, K- and Cs-X zeolites , 1972 .

[19]  H. Helgeson,et al.  Thermodynamics of hydrothermal systems at elevated temperatures and pressures , 1969 .

[20]  H. Helgeson,et al.  A chemical and thermodynamic model of aluminous dioctahedral 2:1 layer clay minerals in diagenetic processes; regular solution representation of interlayer dehydration in smectite , 1994 .

[21]  H. Helgeson,et al.  Compositional End Members and Thermodynamic Components of Illite and Dioctahedral Aluminous Smectite Solid Solutions , 1993 .

[22]  D. Vučelič,et al.  An analysis of elementary processes of water desorption from zeolites of type a , 1976 .

[23]  F. J. Turner,et al.  Metamorphic reactions and metamorphic facies , 1958 .

[24]  Y. Tardy,et al.  A method of estimating the Gibbs energies of formation of layer silicates , 1974 .

[25]  K. K. Kelley,et al.  AN EQUATION FOR THE REPRESENTATION OF HIGH-TEMPERATURE HEAT CONTENT DATA1 , 1932 .

[26]  C. Frondel,et al.  Hendricksite, a new species of mica , 1966 .

[27]  G. Robinson,et al.  Heat capacity, relative enthalpy, and calorimetric entropy of silicate minerals; an empirical method of prediction , 1983 .

[28]  L. P. Reeuwijk THE THERMAL DEHYDRATION OF NATURAL ZEOLITES , 1974 .

[29]  L. Heller-Kallai,et al.  The use of mössbauer spectroscopy of iron in clay mineralogy , 1981 .

[30]  L. G. Schultz Lithium and Potassium Absorption, Dehydroxylation Temperature, and Structural Water Content of Aluminous Smectites , 1969 .

[31]  D. Vučelič,et al.  Thermal quality analysis of water on sythetic zeolite type a , 1973 .

[32]  D. R. Waldbaum The configurational entropies of Ca2MgSi2O7-Ca2SiAl2O7 melilites and related minerals , 1973 .

[33]  H. Ulbrich,et al.  Structural and other contributions to the third-law entropies of silicates , 1976 .

[34]  B. demayo,et al.  Role of Iron Reduction in The Conversion of Smectite to Illite in Bentonites in the Disturbed Belt, Montana , 1979 .

[35]  H. Gaudette The Nature of Illite , 1964 .

[36]  J. Nriagu Thermochemical approximations for clay minerals , 1975 .

[37]  Y. Tardy,et al.  An ideal solid solution model for calculating solubility of clay minerals , 1981, Clay Minerals.

[38]  J. Serratosa,et al.  Silicon-29 and aluminum-27 high-resolution MAS-NMR spectra of phyllosilicates , 1984 .

[39]  Chaoyin Chen A method of estimation of standard free energies of formation of silicate minerals at 298.15 degrees K , 1975 .

[40]  R. Berman,et al.  Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-Sio2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation , 1985 .

[41]  J. Johnston,et al.  Iron Substitution in Montmorillonite, Illite, and Glauconite by 57Fe Mössbauer Spectroscopy , 1987 .

[42]  N. Güven Electron Optical Observations on Marblehead Illite , 1972 .

[43]  R. Kirkpatrick,et al.  High-resolution 29 Si NMR spectroscopy of 2:1 layer silicates: correlations among chemical shift, structural distortions, and chemical variations. , 1987 .

[44]  M. D. Foster The importance of exchangeable magnesium and cation-exchange capacity in the study of montmorillonitic clays , 1951 .

[45]  B. Goodman The Mössbauer Spectra of Nontronites: Consideration of an Alternative Assignment , 1978 .

[46]  H. Suquet,et al.  Swelling and Structural Organization of Saponite , 1975 .

[47]  R. M. Barrer,et al.  Non-stoichiometric hydrates—II: Some heats and entropies for water and ammonia in ion-exchanged faujasites , 1960 .

[48]  A. H. Weir Potassium retention in montmorillonites , 1965, Clay Minerals.

[49]  S. Saxena,et al.  A thermochemical data base for phase equilibria in the system Fe-Mg-Si-O at high pressure and temperature , 1986 .

[50]  T. Pinnavaia,et al.  Silicon and aluminium site distributions in 2:1 layered silicate clays , 1984, Nature.

[51]  E. C. Beutner Slaty cleavage and related strain in Martinsburg Slate, Delaware Water Gap, New Jersey , 1978 .